Volume 45 Issue 6
Jun.  2017
Turn off MathJax
Article Contents
ZHANG Xi, WU Zhi-wei, ZHU Hua-qing, LI Shi-ying, QIN Zhang-feng, FAN Wei-bin, WANG Jian-guo. Controllable synthesis of a 3D flower-like CeTiOx composite oxide exposing CeO2{100} plane and it supported Au catalyst for CO oxidation[J]. Journal of Fuel Chemistry and Technology, 2017, 45(6): 697-706.
Citation: ZHANG Xi, WU Zhi-wei, ZHU Hua-qing, LI Shi-ying, QIN Zhang-feng, FAN Wei-bin, WANG Jian-guo. Controllable synthesis of a 3D flower-like CeTiOx composite oxide exposing CeO2{100} plane and it supported Au catalyst for CO oxidation[J]. Journal of Fuel Chemistry and Technology, 2017, 45(6): 697-706.

Controllable synthesis of a 3D flower-like CeTiOx composite oxide exposing CeO2{100} plane and it supported Au catalyst for CO oxidation

Funds:

the National Natural Science Foundation of China 21403268

Strategic Priority Research Program of the Chinese Academy of Sciences XDA07060300

Shanxi Province Science and Technology Research Project MQ2014-10

Shanxi Province Science and Technology Research Project MQ2014-11

More Information
  • Corresponding author: WU Zhi-wei, Tel/Fax:(0351)4046092, E-mail:wuzhiwei@sxicc.ac.cn; QIN Zhang-feng, Tel/Fax:(0351)4041153, E-mail:qzhf@sxicc.ac.cn
  • Received Date: 2017-02-24
  • Rev Recd Date: 2017-04-26
  • Available Online: 2021-01-23
  • Publish Date: 2017-06-10
  • In this work, a flower-like CeTiOx composite oxide, predominantly exposing CeO2{100} plane, was synthesized by a simple hydrothermal method. The SEM and XRD results revealed the growth mechanism of CeTiOx composite oxide can be divided into two stages, including the rapid growth of amorphous and the following crystallization. The ratio of Ce/Ti, KOH concentration, crystallization time and calcination temperature are the key factors for the synthesis of the flower-like CeTiOx composite oxide. Au catalyst supported on this composite oxide exhibited superior activity for CO oxidation at room temperature. The TEM and H2-TPR results suggested that the exposed CeO2{100} plane and the strong interaction between Au and CeTiOx composite oxide are responsible for the high activity.
  • loading
  • [1]
    SUN Y A, SHEN Y N, JIA M L. Evolution of gold species in an Au/CeO2 catalyst and its impact on activity for CO oxidation[J]. Chem Res Chin Univ, 2010, 26 (3): 453-459.
    [2]
    HARUTA M, YAMADA N, KOBAYASHI T. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide[J]. J Catal, 1989, 115 (2): 301-309. doi: 10.1016/0021-9517(89)90034-1
    [3]
    HARUTA M, TSUBOTA S, KOBAYASHI T. Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4[J]. J Catal, 1993, 144 (1): 175-192. doi: 10.1006/jcat.1993.1322
    [4]
    PANDIAN L, LAURENT D, VINCENT R. Total oxidation of propene over Au/CeO2-Al2O3 catalysts: Influence of the CeO2 loading and the activation treatment[J]. Appl Catal B: Environ, 2010, 96 (1/2): 117-125.
    [5]
    MARIA P C, ALESSANDRO L, ANNA M V. Metal-support and preparation influence on the structural and electronic properties of gold catalysts[J]. Appl Catal A: Gen, 2006, 302 (2): 309-316. doi: 10.1016/j.apcata.2006.02.005
    [6]
    LI Q, ZHANG Y H, CHEN G X. Ultra-low-gold loading Au/CeO2 catalysts for ambient temperature CO oxidation: Effect of preparation conditions on surface composition and activity[J]. J Catal, 2010, 273 (2): 167-176. doi: 10.1016/j.jcat.2010.05.008
    [7]
    LI S H, ZHU H Q, QIN Z F. Morphologic effects of nano CeO2-TiO2 on the performance of Au/CeO2-TiO2 catalysts in low-temperature CO oxidation[J]. Appl Catal B: Environ, 2014, 144 : 498-506. doi: 10.1016/j.apcatb.2013.07.049
    [8]
    QIAN K, HUANG W X, JIANG Z Q. Anchoring highly active gold nanoparticles on SiO2 by CoOx additive[J]. J Catal, 2007, 248 (1): 137-141. doi: 10.1016/j.jcat.2007.02.010
    [9]
    WANG Z H, FU H F, TIAN Z W. Strong metal-support interaction in novel core-shell Au-CeO2 nanostructures induced by different pretreatment atmospheres and its influence on CO oxidation[J]. Nanoscale, 2016, 8 (11): 5865-5872. doi: 10.1039/C5NR06929G
    [10]
    ALESSANDRO L, LEONARDA F L, GABRIELLA D C. Structure and the metal support interaction of the Au/Mn oxide catalysts[J]. Chem Mater, 2010, 22 (13): 3952-3960. doi: 10.1021/cm100697b
    [11]
    LIU X J, LIU J F, CHANG Z. Crystal plane effect of Fe2O3 with various morphologies on CO catalytic oxidation[J]. Catal Commun, 2011, 12 (6): 530-534. doi: 10.1016/j.catcom.2010.11.016
    [12]
    LIN S J, SUA G J, ZHENG M H. Synthesis of flower-like Co3O4-CeO2 composite oxide and its application to catalytic degradation of 1, 2, 4-trichlorobenzene[J]. Appl Catal B: Environ, 2012, 123/124 : 440-447. doi: 10.1016/j.apcatb.2012.05.011
    [13]
    ZHENG Y H, CHENG Y, WANG Y S. Quasicubic alpha-Fe2O3 nanoparticles with excellent catalytic performance[J]. J Phys Chem B, 2006, 110 (7): 3093-3097. doi: 10.1021/jp056617q
    [14]
    XIE X W, LI Y, LIU Z Q. Low-temperature oxidation of CO catalysed by Co3O4 nanorods[J]. Nature, 2009, 458 (7239): 746-749. doi: 10.1038/nature07877
    [15]
    LIU L J, JIANG Y Q, ZHAO H L. Engineering coexposed {001} and {101} facets in oxygen-deficient TiO2 nanocrystals for enhanced CO2 photoreduction under visible light[J]. ACS Catal, 2016, 6 (2): 1097-1108.
    [16]
    WANG G H, LI W C, JIA K M. Shape and size controlled alpha-Fe2O3 nanoparticles as supports for gold-catalysts: Synthesis and influence of support shape and size on catalytic performance[J]. Appl Catal A: Gen, 2009, 364 (1/2): 42-47.
    [17]
    ZIOLKOWSKI J, BARBAUX Y. Identification of sites active in oxidation of butene to butadiene and CO2 on CO3O4 in terms of the crystallochemical model of solid surface[J]. J Mol Catal, 1991, 67 (2): 199-215. doi: 10.1016/0304-5102(91)85047-6
    [18]
    TTHX T S, FRANCESCO C, ZHANG X Q. Structure-activity map of ceria nanoparticles, nanocubes, and mesoporous architectures[J]. Chem Mater, 2016, 28 (20): 7287-7295. doi: 10.1021/acs.chemmater.6b02536
    [19]
    HAUNG W X. Oxide nanocrystal model catalysts[J]. Acc Chem Res, 2016, 49 (3): 520-527. doi: 10.1021/acs.accounts.5b00537
    [20]
    TA N, LIU J Y, SANTHOSH C. Stabilized gold nanoparticles on ceria nanorods by strong interfacial anchoring[J]. J Am Chem Soc, 2012, 134 (51): 20585-20588. doi: 10.1021/ja310341j
    [21]
    TIZIANO M, MICHELE M, MATTEO M. Fundamentals and catalytic applications of CeO2-based materials[J]. Chem Rev, 2016, 116 (10): 5987-6041. doi: 10.1021/acs.chemrev.5b00603
    [22]
    HU Z, LIU X F, MENG D M. Effect of ceria crystal plane on the physicochemical and catalytic properties of Pd/ceria for CO and propane oxidation[J]. Acs Catal, 2016, 6 (4): 2265-2279. doi: 10.1021/acscatal.5b02617
    [23]
    SUN C W, LI H, CHEN L Q. Study of flowerlike CeO2 microspheres used as catalyst supports for CO oxidation reaction[J]. J Phys Chem Solids, 2007, 68 (9): 1785-1790. doi: 10.1016/j.jpcs.2007.05.005
    [24]
    LIU W, FENG L U, ZHANG C. A facile hydrothermal synthesis of 3D flowerlike CeO2 via a cerium oxalate precursor[J]. J Mater Chem A, 2013, 1 (23): 6942-6948. doi: 10.1039/c3ta10487g
    [25]
    ZHOU K B, WANG X, SUN X M. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes[J]. J Catal, 2005, 229 (1): 206-212. doi: 10.1016/j.jcat.2004.11.004
    [26]
    MAI H X, SUN L D, ZHANG Y W. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes[J]. J Phys Chem B, 2005, 109 (51): 24380-24385. doi: 10.1021/jp055584b
    [27]
    SUN C W, SUN J, XIAO G L. Mesoscale organization of nearly monodisperse flowerlike ceria microspheres[J]. J Phys Chem B, 2007, 110 (27): 13445-13452. http://www.irgrid.ac.cn/handle/1471x/794192
    [28]
    PUTLA S, BAITHY M, PADIGAPATI S R. Nano-Au/CeO2 catalysts for CO oxidation: Influence of dopants (Fe, La and Zr) on the physicochemical properties and catalytic activity[J]. Appl Catal B: Environ, 2014, 144 : 900-908. doi: 10.1016/j.apcatb.2013.08.035
    [29]
    PENN R L. Kinetics of oriented aggregation[J]. J Phys Chem B, 2004, 108 (34): 12707-12712. doi: 10.1021/jp036490+
    [30]
    CHEN Y, WANG Y S, ZHEGN Y H. Two-step self-assembly of nanodisks into plate-built cylinders through oriented aggregation[J]. J Phys Chem B, 2005, 109 (23): 11548-11551. doi: 10.1021/jp050641m
    [31]
    HUANG X S, SUN H, WANG L C. Morphology effects of nanoscale ceria on the activity of Au/CeO2 catalysts for low-temperature CO oxidation[J]. Appl Catal B: Environ, 2009, 90 (1/2): 224-232. http://www.sciencedirect.com/science/article/pii/S0926337309001039
    [32]
    ZHONG L S, HU J S, CAO A M. 3D flowerlike ceria micro/nanocomposite structure and its application for water treatment and CO removal[J]. Chem Mater, 2007, 19 (7): 1648-1655. doi: 10.1021/cm062471b
    [33]
    QI J, CHEN J, LI G D. Facile synthesis of core-shell Au@CeO2 nanocomposites with remarkably enhanced catalytic activity for CO oxidation[J]. Energy Environ Sci, 2012, 5 (10): 8937. doi: 10.1039/c2ee22600f
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (87) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return