Volume 48 Issue 4
Apr.  2020
Turn off MathJax
Article Contents
QI Da-bin, LUO Xu-dong, YAO Jun, YAO Yu-long, LU Xiao-jun. Catalytic oxidation of CO on Pd38 cluster and Pd slab, a computational study[J]. Journal of Fuel Chemistry and Technology, 2020, 48(4): 432-439.
Citation: QI Da-bin, LUO Xu-dong, YAO Jun, YAO Yu-long, LU Xiao-jun. Catalytic oxidation of CO on Pd38 cluster and Pd slab, a computational study[J]. Journal of Fuel Chemistry and Technology, 2020, 48(4): 432-439.

Catalytic oxidation of CO on Pd38 cluster and Pd slab, a computational study

Funds:

National Natural Science Foundation of China 51772139

More Information
  • Corresponding author: LUO Xu-dong, Tel: 13610981503, E-mail: luoxudong2019@sina.com
  • Received Date: 2019-11-12
  • Rev Recd Date: 2020-03-04
  • Available Online: 2021-01-23
  • Publish Date: 2020-04-10
  • The catalytic oxidation of CO was comparatively investigated on the Pd slab and Pd38 cluster models by density functional theory (DFT) calculation, in order to reveal the mechanism of CO oxidation over Pd catalysts. The results show that the rate-determining step of CO oxidation on the Pd38 cluster is the dissociation of O2, with the energy barrier of 0.65 eV, whereas the oxidation of CO turns to be the rate-determining step on Pd slab, with the energy barrier of 0.87 eV. Obviously, the oxidation of CO on the Pd38 cluster is much easier than that on the Pd slab, suggesting that the activity of Pd catalysts is related to the dispersion of active Pd species; the Pd catalyst with higher Pd dispersion also exhibits higher activity in CO oxidation.
  • loading
  • [1]
    KIEKEN L D, NEUROCK M, MEID H. Screening by kinetic monte carlo simulation of Pt-Au(100) surfaces for the steady-state decomposition of nitric oxide in excess dioxygen[J]. J Phys Chem B, 2005, 109(6):2234-2244. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f4297eceb58e5567581681eb50a14288
    [2]
    GANDHI H S, GRAHAM G W, MCCABE R W. Automotive exhaust catalysis[J]. J Catal, 2003, 216(1/2):433-442. http://d.old.wanfangdata.com.cn/Periodical/gdyjs200702042
    [3]
    CHENG X, SHI Z, GLASS N, ZHANG L, ZHANG J J, SONG D T, LIU Z S, WANG H J, SHEN J. A review of PEM hydrogen fuel cell contamination:Impacts, mechanisms, and mitigation[J]. J Power Sources, 2007, 165(2):739-756. doi: 10.1016/j.jpowsour.2006.12.012
    [4]
    WANG S, ANG H M, TADE M O. Volatile organic compounds in indoor environment and photocatalytic oxidation:State of the art[J]. Environ Int, 2007, 33(5):694-705. doi: 10.1016/j.envint.2007.02.011
    [5]
    KAGEYAMA S, SUGANO Y, HAMAGUCHI Y, KUGAI J, OHKUBO Y, SEINO S, NAKAGAWA T, ICHIKAWA S, YAMAMOTO T A. Pt/TiO2 composite nanoparticles synthesized by electron beam irradiation for preferential CO oxidation[J]. Mater Res Bull, 2013, 48(4):1347-1351. doi: 10.1016/j.materresbull.2012.11.028
    [6]
    ATES A, PFEIFER P, GOERKE O. Thin-Film catalytic coating of a microreactor for preferential CO oxidation over Pt catalysts[J]. Chem Ing Tech, 2013, 85(5):664-672. doi: 10.1002/cite.201200166
    [7]
    GARCIA-DIEGUEZ M, IGLESIA E. Structure sensitivity via decoration of low-coordination exposed metal atoms:CO oxidation catalysis on Pt clusters[J]. J Catal, 2013, 301:198-209. doi: 10.1016/j.jcat.2013.02.014
    [8]
    LI Y Z, YU Y, WANG J G, SONG J, LI Q, DONG M D, LIU C J. CO oxidation over graphene supported palladium catalyst[J]. Appl Catal B:Environ, 2012, 125:189-196. doi: 10.1016/j.apcatb.2012.05.023
    [9]
    LIU L Q, ZHOU F, WANG L G, QI X J, SHI F, DENG Y Q. Low-temperature CO oxidation over supported Pt, Pd catalysts:Particular role of FeOx support for oxygen supply during reactions[J]. J Catal, 2010, 274(1):1-10.
    [10]
    TODOROKI N, OSANO H, MAEYAMA T, YOSHIDA H, WADAYAMA T. Infrared reflection absorption spectral study for CO adsorption on Pd/Pt(111) bimetallic surfaces[J]. Appl Surf Sci, 2009, 256(4):943-947. doi: 10.1016/j.apsusc.2009.05.070
    [11]
    JAATINEN S, SALO P, ALATALO M, KULMALA V, KOKKO K. Structure and reactivity of Pd doped Ag surfaces[J]. Surf Sci, 2003, 529(3):403-409. doi: 10.1016/S0039-6028(03)00304-2
    [12]
    DESAI S K, NEUROCK M. First-principles study of the role of solvent in the dissociation of water over a Pt-Ru alloy[J]. Phys Rev B, 2003, 68(7):075420. doi: 10.1103/PhysRevB.68.075420
    [13]
    DESAI S K, NEUROCK M. A first principles analysis of CO oxidation over Pt and Pt66.7%Ru33.3% (111) surfaces[J]. Electrochim Acta, 2003, 48(25/26):3759-3773. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8f934a0ca79cacdcc4cfa0378497f04c
    [14]
    SUO Y G, ZHUANG L, LU J T. First-principles considerations in the design of Pd-alloy catalysts for oxygen reduction[J]. Angew Chem Int Ed, 2007, 46(16):2862-2864. doi: 10.1002/anie.200604332
    [15]
    YAO Y F Y. The oxidation of CO and hydrocarbons over noble-metal catalysts[J]. J Catal, 1984, 87(11):152-162. http://cn.bing.com/academic/profile?id=c51f45fa37418adba9c0c493317af2be&encoded=0&v=paper_preview&mkt=zh-cn
    [16]
    ERTL G. Oscillatory kinetics and spatiotemporal self-organization in reactions at solid-surfaces[J]. Science, 1991, 254(5039):1750-1755. doi: 10.1126/science.254.5039.1750
    [17]
    LIAN X, GUO W L, LIU F L, YANG Y, XIAO P, ZHANG Y H, TIAN W Q. DFT studies on Pt3M(M=Pt, Ni, Mo, Ru, Pd, Rh) clusters for CO oxidation[J]. Comput Mater Sci, 2015, 96:237-245. doi: 10.1016/j.commatsci.2014.09.025
    [18]
    KRAUSA M, VIELSTICH W. Potential oscillations during methanol oxidation at Pt-electrodes.1. Experimental conditions[J]. J Electroanal Chem, 1995, 399(1/2):7-12. doi: 10.1016-0022-0728(95)04249-0/
    [19]
    TONG Y Y, KIM H S, BABU P K, WASZCZUK P, WIECKOWSKI A, OLDFIELD E. An NMR investigation of CO tolerance in a Pt/Ru fuel cell catalyst[J]. J Am Chem Soc, 2002, 124(3):468-473. doi: 10.1021/ja011729q
    [20]
    DAVIES J C, BONDE J, LOGADOTTIR A, NORSKOV J K, CHORKENDORFF I. The ligand effect:CO desorption from Pt/Ru catalysts[J]. Fuel Cell, 2005, 5(4):429-435. http://cn.bing.com/academic/profile?id=d50978e820e183a1cf858fc98454726a&encoded=0&v=paper_preview&mkt=zh-cn
    [21]
    WANG F G, XU Y, ZHAO K F, HE D N. Preparation of palladium supported on ferric oxide nano-catalysts for carbon monoxide oxidation in low temperature[J]. Nano-Micro Lett, 2014, 6(3):233-241. doi: 10.1007/BF03353787
    [22]
    PARK R L, SCHREINE D. Oxidation of carbon-monoxide on palladium[J]. J Vac Sci Technol, 1974, 11(1):248-248. doi: 10.1116/1.1318581
    [23]
    ENGEL T, ERTL G. Surface residence times and reaction-mechanism in catalytic-oxidation of CO on Pd(111)[J]. Chem Phys Lett, 1978, 54(1):95-98. http://cn.bing.com/academic/profile?id=8f3fedb70cf03fe5727e80e9aa096fec&encoded=0&v=paper_preview&mkt=zh-cn
    [24]
    MURATA K, ELEEDA E, OHYAMA J, YAMAMOTO Y, ARAI S, SATSUMA A. Identification of active sites in CO oxidation over a Pd/Al2O3 catalyst[J]. Phys Chem Chem Phys, 2019, 21(33):18128-18137. doi: 10.1039/C9CP03943K
    [25]
    LI S Y, LIU G, LIAN H L, JIA M J, ZHAO G M, JIANG D Z, ZHANG W X, Low-temperature CO oxidation over supported Pt catalysts prepared by colloid-deposition method[J]. Catal Commun, 2008, 9(6):1045-1049. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=59f7e79367b9c439d87e6c614eaa1e5d
    [26]
    TELKAR M M, RODE C V, CHAUDHARI R V, JOSHI S S, NALAWADE A M. Shape-controlled preparation and catalytic activity of metal nanoparticles for hydrogenation of 2-butyne-1, 4-diol and styrene oxide[J]. Appl Catal A:Gen, 2004, 273(1/2):11-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=51472866f67c81c9bdb25a10a307157a
    [27]
    HUANG H H, NI X P, LOY G L, CHEW C H, TAN K L, LOH F C, DENG J F, XU G Q. Photochemical formation of silver nanoparticles in poly(N-vinylpyrrolidone)[J]. Langmuir, 1996, 12(4):909-912. http://cn.bing.com/academic/profile?id=d1863c42bb8e1cba00ec703385256b5f&encoded=0&v=paper_preview&mkt=zh-cn
    [28]
    SARKAR A, KAPOOR S, MUKHERJEE T. Preparation, characterization, and surface modification of silver nanoparticles in formamide[J]. J Phys Chem B, 2005, 109(16):7698-7704. doi: 10.1021/jp044201r
    [29]
    GUNAY M E, YILDIRIM R. Modeling preferential CO oxidation over promoted Au/Al2O3 catalysts using decision trees and modular neural networks[J]. Chem Eng Res Des, 2013, 91(5):874-882. doi: 10.1016/j.cherd.2012.08.017
    [30]
    KUGAI J, MORIYA T, SEINO S, NAKAGAWA T, OHKUBO Y, NITANI H, YAMAMOTO T A. Comparison of structure and catalytic performance of Pt-Co and Pt-Cu bimetallic catalysts supported on Al2O3 and CeO2 synthesized by electron beam irradiation method for preferential CO oxidation[J]. Int J Hydrogen Energy, 2013, 38(11):4456-4465. doi: 10.1016/j.ijhydene.2013.01.159
    [31]
    GILROY K D, RUDISKIY A, PENG H C, QIN D, XIA Y N. Bimetallic nanocrystals:Syntheses, properties, and applications[J]. Chem Rev, 2016, 116(18):10414-10472. doi: 10.1021/acs.chemrev.6b00211
    [32]
    HUTCHINGS G J, KIELY C J. Strategies for the synthesis of supported gold palladium nanoparticles with controlled morphology and composition[J]. Acc Chem Res, 2013, 46(8):1759-1772. doi: 10.1021/ar300356m
    [33]
    JACQUES S D M, MICHIEL M D, BEALE A M, SOCHI T, O'BRIEN M G, ESPINOSA-ALONSO L, WECKHUYSEN B M, BARNES P. Dynamic X-ray diffraction computed tomography reveals real-time insight into catalyst active phase evolution[J]. Angew Chem Int Ed, 2011, 50(43):10148-10152. doi: 10.1002/anie.201104604
    [34]
    BANGER K K, YAMASHITA Y, MORI K, PETERSON R L, LEEDHAM T, RICKARD J, SIRRINGHAUS H. Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a 'sol-gel on chip' process[J]. Nat Mater, 2011, 10(1):45-50. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ff1038b8d89f7fde8e2342406a1bfeba
    [35]
    UCHIYAMA T, YOSHIDA H, KUWAUCHI Y, ICHIKAWA S, SHIMADA S, HARUTA M, TAKEDA S. Systematic morphology changes of gold nanoparticles supported on CeO2 during CO oxidation[J]. Angew Chem Int Ed, 2011, 50(43):10157-10160. doi: 10.1002/anie.201102487
    [36]
    ZHANG J, JIN H, SULLIVAN M B, CHIANG F, LIM H, WU P. Study of Pd-Au bimetallic catalysts for CO oxidation reaction by DFT calculations[J]. Phys Chem Chem Phys, 2009, 11(9):1441-1446. doi: 10.1039/b814647k
    [37]
    HUBER B, MOSELER M. Predicting experimental signatures for the oxidation of magnesia supported palladium clusters by density functional theory[J]. Eur Phys J D, 2007, 45(3):485-489. doi: 10.1140/epjd/e2007-00178-5
    [38]
    KALITA B, DEKA R C. DFT study of CO adsorption on neutral and charged Pd-n(n=1-7) clusters[J]. Eur Phys J D, 2009, 53:51-58. doi: 10.1140/epjd/e2009-00044-6
    [39]
    KALITA B, DEKA R C. Reaction intermediates of CO oxidation on gas phase Pd-4 clusters:A density functional study[J]. J Am Chem Soc, 2009, 131(37):13252-13254. doi: 10.1021/ja904119b
    [40]
    CHEN H, WU Y, QI S, CHEN Y, YANG M. Deoxygenation of octanoic acid catalyzed by hollow spherical Ni/ZrO2[J]. Appl Catal A:Gen, 2017, 529:79-90. doi: 10.1016/j.apcata.2016.10.014
    [41]
    WANG B, SONG L, ZHANG R. The dehydrogenation of CH4 on Rh(111), Rh(110) and Rh(100) surfaces:A density functional theory study[J]. Appl Surf Sci, 2012, 258(8):3714-3722. doi: 10.1016/j.apsusc.2011.12.012
    [42]
    ZHANG R, SONG L, WANG Y. Insight into the adsorption and dissociation of CH4 on Pt(h k l) surfaces:A theoretical study[J]. Appl Surf Sci, 2012, 258(18):7154-7160. doi: 10.1016/j.apsusc.2012.04.020
    [43]
    WANG D, LI Y. Bimetallic nanocrystals:Liquid-phase synthesis and catalytic applications[J]. Adv Mater, 2011, 23(9):1044-1060. doi: 10.1002/adma.201003695
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (177) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return