Volume 46 Issue 5
May  2018
Turn off MathJax
Article Contents
LI Yuan-yuan, HUANG Yan, TANG Nan, YAN Run-hua, HU Zhen-yu, XIAO Rao, FU Qing, ZHAO Ling-kui, ZHANG Jun-feng, YANG Liu-chun. Study on the performance of low temperature NH3-SCR over MnO2 nano-catalyst with different crystal structures[J]. Journal of Fuel Chemistry and Technology, 2018, 46(5): 578-584.
Citation: LI Yuan-yuan, HUANG Yan, TANG Nan, YAN Run-hua, HU Zhen-yu, XIAO Rao, FU Qing, ZHAO Ling-kui, ZHANG Jun-feng, YANG Liu-chun. Study on the performance of low temperature NH3-SCR over MnO2 nano-catalyst with different crystal structures[J]. Journal of Fuel Chemistry and Technology, 2018, 46(5): 578-584.

Study on the performance of low temperature NH3-SCR over MnO2 nano-catalyst with different crystal structures

Funds:

the Platform Open Innovation Fund Project in Hunan Province Colleges and Universities 14K094

More Information
  • Corresponding author: HUANG Yan, Tel: 13787324688, E-mail: xtuhy@163.com
  • Received Date: 2018-01-15
  • Rev Recd Date: 2018-03-20
  • Available Online: 2021-01-23
  • Publish Date: 2018-05-10
  • To investigate the relationship between the structure and catalytic activity, four types of MnO2 nano-catalysts with various crystal structures (α-MnO2, β-MnO2, γ-MnO2 and δ-MnO2) were synthesized by hydrothermal method, and their low temperature NH3-SCR activity were tested. The results indicated that catalysts with different structures showed various activities which followed the sequence of γ-MnO2 > α-MnO2 > β-MnO2 > δ-MnO2. It was found that γ-MnO2 showed highest catalytic activity and its NOx conversion rate surpassed 90% at the temperature range of 150-260℃. The catalysts were characterized by X-ray diffraction(XRD), scanning electron microscopy (SEM), N2 adsorption-desorption, thermogravimetric(TG), infrared (FT-IR), temperature programmed reduction(H2-TPR) and pyridine infrared spectroscopy (Py-FTIR). It was inferred that the morphology of the α-MnO2 and β-MnO2 were nanorods, while γ-MnO2 and δ-MnO2 with the structures of nanoneedles. The specific surface area of the catalyst was not the dominant factor affecting the NH3-SCR activity at low temperature. The decent pore structure, strong redox property, abundant chemisorption oxygen and Lewis acid sites were responsible for high low temperature NH3-SCR activity of γ-MnO2 nano-catalyst.
  • loading
  • [1]
    PÂRVULESCU V I, GRANGE P, DELMON B. Catalytic removal of NO[J]. Catal Today, 1998, 46(4):233-316. doi: 10.1016/S0920-5861(98)00399-X
    [2]
    ROY S, HEGDE MS, MADRAS G. Catalysis for NOx abatement[J]. Appl Energy, 2009, 86(11):2283-2297. doi: 10.1016/j.apenergy.2009.03.022
    [3]
    LIU C, SHI J-W, GAO C, NIU C. Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3:A review[J]. Appl Catal A:Gen, 2016, 522:54-69. doi: 10.1016/j.apcata.2016.04.023
    [4]
    杨永利, 徐东耀, 晁春艳, 高明.负载型Mn基低温NH3-SCR脱硝催化剂研究综述[J].化工进展, 2016, 35(4):1094-1100. http://www.chxb.cn/CN/abstract/abstract21882.shtml

    YANG Yong-li, XU Dong-yao, CHAO Chun-yan, GAO Ming. Research advance review on supported Mn-based catalysts at low-temperature selective catalytic reduction of NOx with NH3[J]. Chem Ind Eng Prog, 2016, 35(4):1094-1100. http://www.chxb.cn/CN/abstract/abstract21882.shtml
    [5]
    刘亭, 王廷春, 吴瑞青, 沈伯雄.低温NH3-SCR脱硝催化剂研究进展[J].安全与环境学报, 2012, 19(6):42-44. http://www.chxb.cn/CN/abstract/abstract21645.shtml

    LIU Ting, WANG Ting-chun, WU Rui-qing, SHEN Bo-xiong.Research advance review for low-temperature NH3 -SCR catalysts[J]. J Saf Environ, 2012, 19(6):42-44. http://www.chxb.cn/CN/abstract/abstract21645.shtml
    [6]
    KAPTEIJN F, SINGOREDJO L, ANDREINI A, MOULIJN J A. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia[J]. Appl Catal B:Environ, 1994, 3(2/3):173-189. https://www.sciencedirect.com/science/article/pii/0926337393E00349
    [7]
    刘林林, 田华, 贺军辉, 杨巧文, 王东.隐钾锰矿型和水钠锰矿型氧化锰的研究进展[J].化学通报, 2011, 74(4):000291-000297. http://edu.wanfangdata.com.cn/Periodical/Detail/hxtb2201104001

    LIU Lin-lin, TIAN Hua, HE Jun-hui, YANG Qiao-wen, WANG Dong. Progress in cryptomelane-and birnessite manganese oxides[J]. Chem Bull, 2011, 74(4):000291-000297. http://edu.wanfangdata.com.cn/Periodical/Detail/hxtb2201104001
    [8]
    THACKERAY M M. Manganese oxides for lithium batteries[J]. Prog Solid State Chem, 1997, 25(1/2):1-71. https://www.sciencedirect.com/science/article/pii/S0079678697810035
    [9]
    LIANG S, TENG F, BULGAN G, RUILONG ZONG A, ZHU Y. Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation[J]. J Phys Chem C, 2010, 112(14):5307-5315. http://cn.bing.com/academic/profile?id=b8d1c35f0ad73d0faaa95d2110432375&encoded=0&v=paper_preview&mkt=zh-cn
    [10]
    ZHANG J, LI Y, WANG L, ZHANG C, HE H. Catalytic oxidation of formaldehyde over manganese oxides with different crystal structures[J]. Catal Sci Technol, 2015, 5(4):2305-2313. doi: 10.1039/C4CY01461H
    [11]
    戴韵, 李俊华, 彭悦, 唐幸福. MnO2的晶相结构和表面性质对低温NH3-SCR反应的影响[J].物理化学学报, 2012, 28(7):1771-1776. http://www.whxb.pku.edu.cn/CN/abstract/abstract28056.shtml

    DAI Yun, LI Jun-hua, PENG Yue, TANG Xing-fu. Effects of MnO2 crystal structure and surface property on the NH3-SCR reaction at low temperature[J]. Acta Phys Chim Sin, 2012, 28(7):1771-1776. http://www.whxb.pku.edu.cn/CN/abstract/abstract28056.shtml
    [12]
    LI Y, LI Y, WAN Y, ZHAN S, GUAN Q, TIAN Y. Structure-performance relationships of MnO2nanocatalyst for the low-temperature SCR removal of NOx under ammonia[J]. RSC Adv, 2016, 6(60):54926-54937. doi: 10.1039/C6RA03108K
    [13]
    孙梦婷, 黄碧纯, 马杰文, 李时卉, 董立夫.二氧化锰在低温NH3-SCR催化反应上的形貌效应[J].物理化学学报, 2016, 32(6):1501-1510. doi: 10.3866/PKU.WHXB201603171

    SUN Meng-ting, HUANG Bi-chun, MA Jie-wen, LI Shi-hui, DONG Li-fu. Morphological effects of manganese dioxide on catalytic reactions for low-temperature NH3-SCR[J]. Acta Phys Chim Sin, 2016, 32(6):1501-1510. doi: 10.3866/PKU.WHXB201603171
    [14]
    SUN M, LAN B, YU L, YE F, SONG W, HE J, DIAO G, ZHENG Y. Manganese oxides with different crystalline structures:Facile hydrothermal synthesis and catalytic activities[J]. Mater Lett, 2012, 86:18-20. doi: 10.1016/j.matlet.2012.07.011
    [15]
    王燕彩, 刘昕, 宁平, 张秋林, 张金辉, 徐利斯, 唐小苏, 王明智.制备方法对氧化锰八面体分子筛的NH3选择性催化还原NOx性能的影响[J].燃料化学学报, 2014, 42(11):1357-1364. doi: 10.3969/j.issn.0253-2409.2014.11.013

    WANG Yan-cai, LIU Xin, NING Ping, ZHANG Qiu-lin, ZHANG Jin-hui, XU Li-si, TANG Xiao-su, WANG Ming-zhi. Effect of preparation methods on selective catalytic reduction of NOx with NH3 over manganese oxide octahedral molecular sieves[J]. J Fuel Chem Technol, 2014, 42(11):1357-1364. doi: 10.3969/j.issn.0253-2409.2014.11.013
    [16]
    苏潜, 黄妍, 张颖, 李元元, 唐南, 张俊丰, 杨柳春.铜源对Cu-S APO-34氨催化还原NO性能的影响[J].分子催化, 2016, 30(2):151-158. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fzch201602007

    SU Qian, HUANG Yan, ZHANG Yin, LI Yuan-yuan, TANG Nan, ZHANG Jun-fen, YANG Liu-chun. Effects of copper sources on selective catalytic reduction of NO with NH3 of Cu-SAPO-34[J]. J Mol Catal, 2016, 30(2):151-158. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fzch201602007
    [17]
    GIOVANOLI R. Thermogravimetry of manganese dioxides[J]. Thermochim Acta, 1994, 234(94):303-313. https://www.sciencedirect.com/science/article/pii/0040603194851549
    [18]
    WANG C, SUN L, CAO Q, HU B, HUANG Z, TANG X. Surface structure sensitivity of manganese oxides for low-temperature selective catalytic reduction of NO with NH3[J]. Appl Catal B:Environ, 2011, 101(3/4):598-605. doi: 10.1016/j.apcatb.2010.10.034
    [19]
    WANG ZM, KANOH H. Calorimetric study on NH3 insertion reaction into microporous manganese oxides with (2×2) tunnel and (2×∞) layered structures[J]. Thermochim Acta, 2001, 379(1):7-14. https://www.sciencedirect.com/science/article/pii/S0040603101005962
    [20]
    郭学益, 刘海涵, 李栋, 田庆华, 徐刚.二氧化锰晶型转变研究[J].矿冶工程, 2007, 27(1):50-53. http://jz.docin.com/p-1236768287.html

    GUO Xue-yi, LIU Hai-han, LI Dong, TIAN Qing-hua, XU Gang. Influence of thermal treatment on the crystal phase transformation of MnO2[J]. Min Metal Eng, 2007, 27(1):50-53. http://jz.docin.com/p-1236768287.html
    [21]
    AND S D, MUNICHANDRAIAH N. Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties[J]. J Phys Chem C, 2008, 112(11):4406-4417. doi: 10.1021/jp7108785
    [22]
    LI Y, FAN Z, SHI J, LIU Z, ZHOU J, SHANGGUAN W. Modified manganese oxide octahedral molecular sieves M'-OMS-2(M'=Co, Ce, Cu) as catalysts in post plasma-catalysis for acetaldehyde degradation[J]. Catal Today, 2015, 256:178-185. doi: 10.1016/j.cattod.2015.02.003
    [23]
    XIE J, CHEN L, ZHOU W F, AU C T, YIN S F. Selective oxidation of p-chlorotoluene to p-chlorobenzaldehyde over metal-modified OMS-2 molecular sieves[J]. J Mol Catal A:Chem, 2016, 425:110-115. doi: 10.1016/j.molcata.2016.09.038
    [24]
    辛勤, 罗孟飞.现代催化研究方法[M].北京:科学出版社, 2009.

    XIN Qin, LUO Meng-fei. The Modern Catalytic Research Method[M]. Beijing:Science Press, 2009.
    [25]
    WU Z, JIANG B, LIU Y, WANG H, JIN R. DRIFT study of manganese/titania-based catalysts for low-temperature selective catalytic reduction of NO with NH3[J]. Environ Sci Technol, 2007, 41(16):5812-5817. doi: 10.1021/es0700350
    [26]
    YU C, HUANG B, DONG L, CHEN F, LIU X. In situ FT-IR study of highly dispersed MnOx/SAPO-34 catalyst for low-temperature selective catalytic reduction of NOx by NH3[J]. Catal Today, 2017, 281:610-620. doi: 10.1016/j.cattod.2016.06.025
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (180) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return