Volume 47 Issue 7
Jul.  2019
Turn off MathJax
Article Contents
XU Hao, ZHANG Cheng, YUAN Chang-le, YU Sheng-hui, LI Quan, FANG Qing-yan, CHEN Gang. Study on arsenic adsorption characteristics by mineral elements in simulated flue gas atmosphere[J]. Journal of Fuel Chemistry and Technology, 2019, 47(7): 876-883.
Citation: XU Hao, ZHANG Cheng, YUAN Chang-le, YU Sheng-hui, LI Quan, FANG Qing-yan, CHEN Gang. Study on arsenic adsorption characteristics by mineral elements in simulated flue gas atmosphere[J]. Journal of Fuel Chemistry and Technology, 2019, 47(7): 876-883.

Study on arsenic adsorption characteristics by mineral elements in simulated flue gas atmosphere

Funds:

the National Key Research and Development Program of China 2018YFB0605105

More Information
  • Corresponding author: ZHANG Cheng, Tel: 027-87542417-8321, Fax: 027-87545526, E-mail: chengzhang@mail.hust.edu.cn
  • Received Date: 2019-03-27
  • Rev Recd Date: 2019-05-14
  • Available Online: 2021-01-23
  • Publish Date: 2019-07-10
  • The adsorption characteristics of As2O3(g) by CaO, Fe2O3, MgO, Al2O3, K2SO4 and Ca/Fe mixed adsorbents under the simulated flue gas atmosphere were studied by using a gas phase arsenic adsorption reaction experimental device at temperatures between 300 and 900℃. The results indicate that the adsorption ability of CaO is the strongest among the five single element adsorbents, while K2SO4 is the weakest. With the increase of temperature, the adsorption amount of CaO increases first, decreases slightly at 700℃, and then increases, while the adsorption amount of Fe2O3 increases first, and then decreases. However, the adsorption amount of MgO, Al2O3 and K2SO4 increases all the way. Compared with the calculated values of adsorption amounts of Ca/Fe mixed adsorbents in three proportions, the experimental values increase by 92% at least. The adsorption effect is the best when the ratio of CaO to Fe2O3 is 3:1. And the change of surface structure caused by sintering reaction after mixing is an important reason for the improvement of the adsorption effect.
  • loading
  • [1]
    WANG C, LIU H, ZHANG Y, ZOU C, ANTHONY E J. Review of arsenic behavior during coal combustion:Volatilization, transformation, emission and removal technologiesJ]. Prog Energy Combust, 2018, 68:1-28. doi: 10.1016/j.pecs.2018.04.001
    [2]
    康彧.煤矿区中砷的环境生物地球化学研究[D].合肥: 中国科学技术大学, 2014.

    KANG Yu. Environmental biogeochemistry of arsenic in coal mining area[D]. Hefei: University of Science and Technology of China, 2014.
    [3]
    WANG C, ZHANG Y, SHI Y, LIU H, ZOU C, WU H, KANG X. Research on collaborative control of Hg, As, Pb and Cr by electrostatic-fabric-integrated precipitator and wet flue gas desulphurization in coal-fired power plants[J]. Fuel, 2017, 210:527-534. doi: 10.1016/j.fuel.2017.08.108
    [4]
    TIAN H Z, ZHU C Y, GAO J J, CHENG K, HAO J M, WANG K, HUA S B, WANG Y, ZHOU J R. Quantitative assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in China:Historical trend, spatial distribution, uncertainties, and control policies[J]. Atmos Chem Phys, 2015, 15(17):10127-10147. doi: 10.5194/acp-15-10127-2015
    [5]
    LI S, GUO S, HUANG X, HUANG T, BIBI I, MUHAMMAD F, XU G, ZHAO Z, YU L, YAN Y, JIAO B, NIAZI N K, LI D. Research on characteristics of heavy metals (As, Cd, Zn) in coal from southwest China and prevention method by using modified calcium-based materials[J]. Fuel, 2016, 186:714-725. doi: 10.1016/j.fuel.2016.09.008
    [6]
    LI J, PENG Y, CHANG H, LI X, CRITTENDEN J C, HAO J. Chemical poison and regeneration of SCR catalysts for NOx removal from stationary sources[J]. Front Environ Sci Eng, 2016, 10(3):413-427. doi: 10.1007/s11783-016-0832-3
    [7]
    PRATIM B, WU C Y. Control of toxic metal emissions from combustors using sorbents:A review[J]. J Air Waste Manage, 1998, 48(2):113-127. doi: 10.1080/10473289.1998.10463657
    [8]
    WANG J, ZHANG Y, LIU Z, NORRIS P, ROMERO C E, XU H, PAN W P. Effect of coordinated air pollution control devices in coal-fired power plants on arsenic emissions[J]. Energy Fuels, 2017, 31(7):7309-7316. doi: 10.1021/acs.energyfuels.7b00711
    [9]
    ZHAO Y C, ZHANG J Y, HUANG W C, WANG Z H, LI Y, SONG D Y, ZHAO, F H, ZHENG C G. Arsenic emission during combustion of high arsenic coals from southwestern Guizhou, China[J]. Energy Convers Manage, 2008, 49(4):615-624. doi: 10.1016/j.enconman.2007.07.044
    [10]
    YANG Y, HU H, XIE K, HUANG Y, LIU H, LI X, YAO H, NARUSE I. Insight of arsenic transformation behavior during high-arsenic coal combustion[J]. Proc Combust Inst, 2019, 37(4):4443-4450. doi: 10.1016/j.proci.2018.07.064
    [11]
    ZHANG K, ZHANG D, ZHANG K, CAO Y. Capture of gas-phase arsenic by ferrospheres separated from fly ashes[J]. Energy Fuels, 2016, 30(10):8746-8752. doi: 10.1021/acs.energyfuels.6b01637
    [12]
    张月, 王春波, 刘慧敏, 孙喆, 李文瀚, 张永生, 潘伟平.金属氧化物吸附剂干法脱除气相As2O3实验研究[J].燃料化学学报, 2015, 43(4):476-482. doi: 10.3969/j.issn.0253-2409.2015.04.016

    ZHANG Yue, WANG Chun-bo, LIU Hui-min, SUN Zhe, LI Wen-han, ZHANG Yong-sheng, PAN Wei-ping. Removal of gas-phase As2O3 in dry process by metal oxide adsorbents[J]. J Fuel Chem Technol, 2015, 43(4):476-482. doi: 10.3969/j.issn.0253-2409.2015.04.016
    [13]
    MAHULI S, AGNIHOTRI R, CHAUK S, GHOSHDASTIDAR A, FAN L S. Mechanism of arsenic sorption by hydrated lime[J]. Environ Sci Technol, 1997, 31(11):3226-3231. doi: 10.1021/es9702125
    [14]
    STERLING R O, HELBLE J J. Reaction of arsenic vapor species with fly ash compounds:Kinetics and speciation of the reaction with calcium silicates[J]. Chemosphere, 2003, 51(10):1111-1119. doi: 10.1016/S0045-6535(02)00722-1
    [15]
    张月, 李文瀚, 王春波, 刘慧敏, 张永生, 潘伟平.超声波辅助浸渍法制备Fe2O3/γ-Al2O3吸附剂脱除气相As2O3的实验研究[J].燃料化学学报, 2015, 43(9):1134-1141. doi: 10.3969/j.issn.0253-2409.2015.09.017

    ZHANG Yue, LI Wen-han, WANG Chun-bo, LIU Hui-min, ZHANG Yong-sheng, PAN Wei-ping. Experimental study on As2O3 capture from gas phase using ultrasound-assisted prepared Fe2O3/γ-Al2O3 sorbent[J]. J Fuel Chem Technol, 2015, 43(9):1134-1141. doi: 10.3969/j.issn.0253-2409.2015.09.017
    [16]
    HUANG Y, YANG Y, HU H, XU M, LIU H, LI X, WANG X, YAO H. A deep insight into arsenic adsorption over γ-Al2O3 in the presence of SO2/NO[J]. Proc Combust Inst, 2019, 37(4):4443-4450. doi: 10.1016/j.proci.2018.07.064
    [17]
    CHEN D, HU H, XU Z, LIU H, CAO J, SHEN J, YAO H. Findings of proper temperatures for arsenic capture by CaO in the simulated flue gas with and without SO2[J]. Chem Eng J, 2015, 267:201-206. doi: 10.1016/j.cej.2015.01.035
    [18]
    张军营, 任德贻, 钟秦, 徐复铭, 张衍国. CaO对煤中砷挥发性的抑制作用[J].燃料化学学报, 2000, 28(3):198-200. doi: 10.3969/j.issn.0253-2409.2000.03.002

    ZHANG Jun-ying, REN De-yi, ZHONG Qin, XU Fu-ming, ZHANG Yan-guo. Restraining of arsenic volatility using lime in coal combustion[J]. J Fuel Chem Technol, 2000, 28(3):198-200. doi: 10.3969/j.issn.0253-2409.2000.03.002
    [19]
    JADHAV R A, FAN L S. Capture of gas-phase arsenic oxide by Lime:Kinetic and mechanistic studies[J]. Environ Sci Technol, 2001, 35(4):794-799. doi: 10.1021/es001405m
    [20]
    LI Y, TONG H, ZHUO Y, LI Y, XU X. Simultaneous removal of SO2 and trace As2O3 from flue gas:Mechanism, kinetics study, and effect of main gases on arsenic capture[J]. Environ Sci Technol, 2007, 41(8):2894-2900. doi: 10.1021/es0618494
    [21]
    ZHANG Y, LIU J. Density functional theory study of arsenic adsorption on the Fe2O3 (001) Surface[J]. Energy Fuels, 2019, 33(2):1414-1421. doi: 10.1021/acs.energyfuels.8b04155
    [22]
    MCLENNAN A R, BRYANT G W, STANMORE B R, WALL T F. Ash formation mechanisms during pf combustion in reducing conditions[J]. Energy Fuels, 2000, 14(1):150-159. doi: 10.1021-ef990095u/
    [23]
    ZHOU C, LIU G, XU Z, SUN H, LAM P K S. Effect of ash composition on the partitioning of arsenic during fluidized bed combustion[J]. Fuel, 2017, 204:91-97. doi: 10.1016/j.fuel.2017.05.048
    [24]
    HU H, CHEN D, LIU H, YANG Y, CAI H, SHEN J, YAO H. Adsorption and reaction mechanism of arsenic vapors over γ-Al2O3 in the simulated flue gas containing acid gases[J]. Chemosphere, 2017, 180:186-191. doi: 10.1016/j.chemosphere.2017.03.114
    [25]
    CONTRERAS M L, AROSTEGUI J M, ARMESTO L. Arsenic interactions during co-combustion processes based on thermodynamic equilibrium calculations[J]. Fuel, 2009, 88(3):539-546. doi: 10.1016/j.fuel.2008.09.028
    [26]
    SEAMES W S, WENDT J O L. Regimes of association of arsenic and selenium during pulverized coal combustion[J]. Proc Combust Inst, 2007, 31(2):2839-2846. doi: 10.1016/j.proci.2006.08.066
    [27]
    LIU G, LIAO Y, WU Y, MA X. Synthesis gas production from microalgae gasification in the presence of Fe2O3 oxygen carrier and CaO additive[J]. Appl Energy, 2018, 212:955-965. doi: 10.1016/j.apenergy.2017.12.110
    [28]
    张国柱.复合铁酸钙相组成及其理化特性的研究[D].唐山: 华北理工大学, 2017.

    ZHANG Guo-zhu. Study on the crystal composition and physical and chemical properties of SFCA[D]. Tangshan: North China University of Science and Technology, 2017.
    [29]
    范晓慧, 孟君, 陈许玲, 庄剑鸣, 李英, 袁礼顺.铁矿烧结中铁酸钙形成的影响因素[J].中南大学学报(自然科学版), 2008, 39(6):1125-1131. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb200806002

    FAN Xiao-hui, Meng Jun, CHEN Xu-lin, ZHUANG Jian-ming, LI Ying, YUAN Li-shun. Influence factors of calcium ferrite formation in iron ore sintering[J]. J Cent South Univ, 2008, 39(6):1125-1131. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb200806002
    [30]
    孟凡俭.复合铁酸钙形成影响因素及初渣生成行为研究[D].鞍山: 辽宁科技大学, 2018.

    MENG Fan-jian. Study on the influencing factors of forming Silico-Ferrite of calcium and aluminum and the behavior of primary slag formation[D]. Anshan: University of Science and Technology Liaoning, 2018.
    [31]
    李彦旭, 李春虎, 郭汉贤, 钟炳.铁钙氧化物高温煤气脱硫剂的制备[J].燃料化学学报, 1999, 27(6):49-54. http://cdmd.cnki.com.cn/Article/CDMD-10112-2004097407.htm

    LI Yan-xu, LI Chun-hu, GUO Han-xian, ZHONG Bing. Preparation of iron calcium oxide high temperature gas desulfurizer[J]. J Fuel Chem Technol, 1999, 27(6):49-54. http://cdmd.cnki.com.cn/Article/CDMD-10112-2004097407.htm
    [32]
    杨立寨, 祁海鹰, 由长福, 徐旭常.中温条件下氧化铁对氧化钙脱硫的活化作用[J].化工学报, 2003, 54(1):86-90. doi: 10.3321/j.issn:0438-1157.2003.01.019

    YANG Li-zhai, QI Hai-ying, YOU Chang-fu, XU Xu-chang. Activation of Fe2O3 to desulfurization with CaO AT medium temperature[J]. J Chem Ind Eng, 2003, 54(1):86-90. doi: 10.3321/j.issn:0438-1157.2003.01.019
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (136) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return