Volume 48 Issue 10
Oct.  2020
Turn off MathJax
Article Contents
ZHOU Wen-bo, NIU Sheng-li, WANG Dong, LU Chun-mei, HAN Kui-hua, LI Ying-jie, ZHU Ying. Promoting effect of Ti in the Ti-modified γ-Fe2O3 catalyst on its performance in the selective catalytic reduction of NO with ammonia, a DFT calculation study[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1224-1235.
Citation: ZHOU Wen-bo, NIU Sheng-li, WANG Dong, LU Chun-mei, HAN Kui-hua, LI Ying-jie, ZHU Ying. Promoting effect of Ti in the Ti-modified γ-Fe2O3 catalyst on its performance in the selective catalytic reduction of NO with ammonia, a DFT calculation study[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1224-1235.

Promoting effect of Ti in the Ti-modified γ-Fe2O3 catalyst on its performance in the selective catalytic reduction of NO with ammonia, a DFT calculation study

Funds:

The National Natural Science Foundation of China 51576117

The National Natural Science Foundation of China 21906090

Important Project in the Scientific Innovation of Shandong Province 2019JZZY020305

More Information
  • Corresponding author: NIU Sheng-li, E-mail:nsl@sdu.edu.cn
  • Received Date: 2020-08-26
  • Rev Recd Date: 2020-09-23
  • Available Online: 2021-01-23
  • Publish Date: 2020-10-10
  • The promoting effect of a typical transition metal Ti in the Ti-modified γ-Fe2O3 catalyst on its performance in the selective catalytic reduction (SCR) of NO with ammonia was investigated by density functional theory (DFT) calculation. Various doping models of single Ti and double Ti at different Fe sites on the γ-Fe2O3(001) surface were constructed; the surface doping formation energy was calculated, the adsorption characteristics of O2, NO and NH3 molecules on γ-Fe2O3 (001) surface before and after Ti doping were compared, and the reaction mechanism was analyzed. The results illustrate that single Ti atom tends to be doped at octahedral Feoct site, whereas two Ti atoms at two Feoct sites. The adsorption of O2 onto the catalyst surface can be enhanced through the Ti doping; moreover, the enhancement increases with an increase in the doping content of Ti. Both single Ti and double Ti doping inhibit the N-terminal adsorption of NO on the catalyst surface. Ti can enhance the Lewis acid sites and promote the adsorption of NH3, which is beneficial to SCR reaction. The doping of Ti increases the energy barrier of NO2 formation and reduces the SCR reaction of γ-Fe2O3 at low temperature. The doping of Ti can inhibit the formation of NH and N, avoid the excessive oxidation of NH3, and improve the utilization of NH3, which are beneficial to the SCR reaction by suppressing the N2O produced by the E-R mechanism and enhancing the selectivity to N2. As a result, the Ti doping can significantly improve catalytic performance of γ-Fe2O3 in the NH3-SCR of NO.
  • loading
  • [1]
    李颖, 牛胜利, 路春美, 王家兴, 彭建升.生物质再燃异相还原NO的分子模拟[J].燃料化学学报, 2020, 48(6):689-697. http://www.ccspublishing.org.cn/article/id/c46d5c07-4145-4f3d-a991-d228e038f4fe

    LI Ying, NIU Sheng-li, LU Chun-mei, WANG Jia-xing, PENG Jian-sheng. Molecular simulation study of NO heterogeneous reduction by biomass reburning[J]. J Fuel Chem Technol, 2020, 48(6):689-697. http://www.ccspublishing.org.cn/article/id/c46d5c07-4145-4f3d-a991-d228e038f4fe
    [2]
    束航, 张玉华, 杨林军, 刘亚明, 李方勇, 徐齐胜, 盘思伟. SCR烟气脱硝对PM2.5排放特性的影响机制研究[J].燃料化学学报, 2015, 43(12):1510-1515. http://www.ccspublishing.org.cn/article/id/100033461

    SHU Hang, ZHANG Yu-hua, YANG Lin-jun, LIU Ya-ming, LI Fang-yong, XU Qi-sheng, PAN Si-wei. Effects of SCR-DeNOx system on emission characteristics of fine particles[J]. J Fuel Chem Technol, 2015, 43(12):1510-1515. http://www.ccspublishing.org.cn/article/id/100033461
    [3]
    LI Y H, DENG J L, SONG W Y, LIU J, ZHAO Z, GAO M L, WEI Y C, ZHAO L. Nature of Cu Species in Cu-SAPO-18 catalyst for NH3-SCR:Combination of experiments and DFT calculations[J]. J Phys Chem C, 2016, 120(27):14669-14680. doi: 10.1021/acs.jpcc.6b03464
    [4]
    蔺卓玮, 陆强, 唐昊, 李慧, 董长青, 杨勇平.平板式V2O5-MoO3/TiO2型SCR催化剂的中低温脱硝和抗中毒性能研究[J].燃料化学学报, 2017, 45(1):113-122. http://www.cnki.com.cn/article/cjfdtotal-rlhx201701016.htm

    LIN Zhuo-wei, LU Qiang, TANG Hao, LI Hui, DONG Chang-qing, YANG Yong-ping. Research on the middle-low temperature denitration and anti-poisoning properties of plate V2O5-MoO3/TiO2 SCR catalysts[J]. J Fuel Chem Technol, 2017, 45(1):113-122. http://www.cnki.com.cn/article/cjfdtotal-rlhx201701016.htm
    [5]
    HUSNAIN N, WANG E L, LI K, ANWAR M T, MEHMOOD A, GUL M, LI D L, MAO J D. Iron oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3[J]. Rev Chem Eng, 2018, 35(2):239-264. doi: 10.1515/revce-2017-0064
    [6]
    王芳, 姚桂焕, 归柯庭.铁基催化剂选择性催化还原烟气脱硝特性比较研究[J].中国电机工程学报, 2009, 29(29):49-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdjgcxb200929009

    WANG Fang, YAO Gui-huan. GUI Ke-ting. Comparison about selective catalytic reduction of de-NOx on iron-based magnetic materials[J]. Proc CSEE, 2009, 29(29):49-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdjgcxb200929009
    [7]
    LIANG H, GUI K T, ZHA X B. DRIFTS study of γFe2O3 nano-catalyst for low-temperature selective catalytic reduction of NOx with NH3[J]. Can J Chem Eng, 2016, 94(9):1668-1675. doi: 10.1002/cjce.22546
    [8]
    彭建升, 王栋, 张信莉, 路春美, 牛胜利, 李婧, 徐丽婷.磁性γ-Fe2O3催化剂NH3-SCR脱硝反应动力学研究[J].中国电机工程学报, 2015, 35(18):4690-4696. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdjgcxb201518015

    PENG Jian-sheng, WANG Dong, ZHANG Xin-li, LU Chun-mei, NIU Sheng-li, LI Jing, XU Li-ting. Kinetic study of selective catalytic reduction of NOx by NH3 on magnetic γ-Fe2O3 catalyst[J]. Proc CSEE, 2015, 35(18):4690-4696. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdjgcxb201518015
    [9]
    YANG S J, LI J H, WANG C Z, CHEN J H, MA L, CHANG H Z, CHEN L, YUE P, YAN N Q. Fe-Ti spinel for the selective catalytic reduction of NO with NH3:Mechanism and structure-activity relationship[J]. Appl Catal B:Environ, 2012, 117-118:73-80. doi: 10.1016/j.apcatb.2012.01.001
    [10]
    王栋, 吴惊坤, 牛胜利, 路春美, 徐丽婷, 于贺伟, 李婧. Sn, Ti掺杂改性γ-Fe2O3催化剂结构及NH3-SCR脱硝活性研究[J].燃料化学学报, 2015, 43(7):876-883. http://www.ccspublishing.org.cn/article/id/100033375

    WANG Dong, WU Jing-kun, NIU Sheng-li, LU Chun-mei, XU Li-ting, YU He-wei, LI Jing. Structural property of γ-Fe2O3 catalysts doped with Sn and Ti and their activity in the selective catalytic reduction of NOx[J]. J Fuel Chem Technol, 2015, 43(7):876-883. http://www.ccspublishing.org.cn/article/id/100033375
    [11]
    LU W, CUI S P, GUO H X. Study the low-temperature SCR property of M-doped (M=Ni, Cr, Co, Se, Sn) MnO2(100) through density functional theory (DFT):Improvement of sulfur poisoning resistance[J]. Mol Catal, 2018, 459:31-37. doi: 10.1016/j.mcat.2018.08.020
    [12]
    LIU Z M, MA L L, JUNAID A S M. NO and NO2 adsorption on Al2O3 and Ga modified Al2O3 surfaces:A density functional theory study[J]. J Phys Chem C, 2010, 114(10):4445-4450. doi: 10.1021/jp907925w
    [13]
    ZHANG X P, LI Z F, ZHAO J J, CUI Y Z, TAN B J, WANG J X, ZHANG C X, HE G H. Mechanism of Ce promoting SO2 resistance of MnOx/γ-Al2O3:An experimental and DFT study[J]. Korean J Chem Eng, 2017, 34(7):1-7. doi: 10.1007/s11814-017-0092-3
    [14]
    REN D D, GUI K T. Study of the adsorption of NH3 and NOx on the nano-γFe2O3 (001) surface with density functional theory[J]. Appl Surf Sci, 2019, 487:171-179. doi: 10.1016/j.apsusc.2019.04.250
    [15]
    REN D D, GUI K T, GU S C, WEI Y L. Study of the nitric oxide reduction of SCR-NH3 on γ-Fe2O3 catalyst surface with quantum chemistry[J]. Appl Surf Sci, 2020, 509:144659. doi: 10.1016/j.apsusc.2019.144659
    [16]
    JΦRGENSEN J E, MOSEGAARD L, THOMSEN L E, JENSEN T R, HANSON J C. Formation of γ-Fe2O3 nanoparticles and vacancy ordering:An in situ X-ray powder diffraction study[J]. J Solid State Chem, 2007, 180(1):180-185. http://www.sciencedirect.com/science/article/pii/S0022459606005342
    [17]
    JIAN W, WANG S P, ZHANG H X, BAI F Q. Disentangling the role of oxygen vacancies on the surface of Fe3O4 and γ-Fe2O3[J]. Inorg Chem Front, 2019, 6(10):2660-2666. doi: 10.1039/C9QI00351G
    [18]
    BAETZOLD R C, YANG H. Computational study on surface structure and crystal morphology of γ-Fe2O3:Toward deterministic synthesis of nanocrystals[J]. J Phys Chem B, 2003, 107(51):14357-14364. doi: 10.1021/jp035785k
    [19]
    GUO P, GUO X, ZHENG C G. Roles of γ-Fe2O3 in fly ash for mercury removal:Results of density functional theory study[J]. Appl Surf Sci, 2010, 256(23):6991-6996. doi: 10.1016/j.apsusc.2010.05.013
    [20]
    SEGALL M D, LINDAN P J D, PROBERT M J, PICKARD C J, HASNIP P J, CLARK S J, PAYNE M C. First-principles simulation:Ideas, illustrations and the CASTEP code[J]. J Phys-Condens Matter, 2002, 14(11):2717. doi: 10.1088/0953-8984/14/11/301
    [21]
    HUBER K P, HERZBERG G. Molecular spectra and molecular structure:Ⅳ. Constants of diatomic molecules[M]. New York:Springer Science & Business Media, 2013.
    [22]
    李淑萍, 孟江, 王继刚. NO在金属Ben(n=2-12)团簇表面的平行吸附[J].原子与分子物理学报, 2019, 36(2):240-245. http://www.cnki.com.cn/Article/CJFDTotal-YZYF201902011.htm

    LI Shu-ping, MENG Jiang, WANG Ji-gang. Parallel adsorption for NO on the surfaces of Ben (n=2-12) clusters[J]. J At Mol Phys, 2019, 36(2):240-245. http://www.cnki.com.cn/Article/CJFDTotal-YZYF201902011.htm
    [23]
    LIDE D R. CRC Handbook of Chemistry and Physics[M]. 81st. Boca Raton:CRC Press, 2000.
    [24]
    LYU Z K, NIU S L, LU C M, ZHAO G J, GONG Z Q, ZHU Y. A density functional theory study on the selective catalytic reduction of NO by NH3 reactivity of α-Fe2O3 (001) catalyst doped by Mn, Ti, Cr and Ni[J]. Fuel, 2020, 267:117147. doi: 10.1016/j.fuel.2020.117147
    [25]
    BENTARCURT Y L, CALATAYUD M, KLAPP J, RUETTE F. Periodic density functional theory study of maghemite (001) surface. Structure and electronic properties[J]. Surf Sci, 2018, 677:239-253. doi: 10.1016/j.susc.2018.06.005
    [26]
    张倩. NH3及NO在Fe掺杂MnO2(110)表面吸附行为的密度泛函理论研究[D].太原: 太原理工大学, 2015.

    ZHANG Qian. DFT study of NH3 and NO adsorption behavior on Fe doping MnO2(110) surface[D]. Taiyuan: Taiyuan University of Technology, 2015.
    [27]
    厉志鹏, 牛胜利, 赵改菊, 韩奎华, 李英杰, 路春美, 程屾. Sr掺杂对CaO (100)表面吸附甲醇影响的分子模拟[J].燃料化学学报, 2020, 48(2):172-178. http://www.ccspublishing.org.cn/article/id/798fb962-9661-4838-b806-274ba783fec8

    LI Zhi-peng, NIU Sheng-li, ZHAO Gai-ju, HAN Kui-hua, LI Ying-jie, LU Chun-mei, CHENG Shen. Molecular simulation study of strontium doping on the adsorption of methanol on CaO(100) surface[J]. J Fuel Chem Technol, 2020, 48(2):172-178. http://www.ccspublishing.org.cn/article/id/798fb962-9661-4838-b806-274ba783fec8
    [28]
    YUAN R M, FU G, XU X, WAN H L. Brønsted-NH4+ mechanism versus nitrite mechanism:new insight into the selective catalytic reduction of NO by NH3[J]. Phys Chem Chem Phys, 2011, 13(2):453-460. doi: 10.1039/C0CP00256A
    [29]
    胡海鹏, 王学涛, 张兴宇, 苏晓昕, 杨晓东, 史瑞华. Fe-Cu/ZSM-5催化剂的NH3-SCR脱硝性能[J].燃料化学学报, 2018, 46(2):225-232. https://www.zhangqiaokeyan.com/academic-journal-cn_journal-fuel-chemistry-technology_thesis/0201247838694.html

    HU Hai-peng, WANG Xue-tao, ZHANG Xing-yu, SU Xiao-xin, YANG Xiao-dong, SHI Rui-hua. Performance of Fe-Cu/ZSM-5 catalyst in the deNOx process via NH3-SCR[J]. J Fuel Chem Technol, 2018, 46(2):225-232. https://www.zhangqiaokeyan.com/academic-journal-cn_journal-fuel-chemistry-technology_thesis/0201247838694.html
    [30]
    梁辉, 查贤斌, 归柯庭. γFe2O3的选择性催化还原脱硝性能及其对NH3和NO的表面吸附行为研究[J].中国电机工程学报, 2014, 34(32):5734-5740. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdjgcxb201432006

    LIANG Hui, CHA Xian-bin, GUI Ke-ting. A study of selective catalysis reduction denitration performance and adsorption of NH3 and NO over γFe2O3 catalyst[J]. Proc CSEE, 2014, 34(32):5734-5740. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdjgcxb201432006
    [31]
    YANG S J, CHANG H Z, MA L, QU Z, YAN N Q, WANG C Z, LI J H. Improvement of the activity of γ-Fe2O3 for the selective catalytic reduction of NO with NH3 at high temperatures:NO reduction versus NH3 oxidization[J]. Ind Eng Chem Res, 2013, 52(16):5601-5610. doi: 10.1021/ie303272u
    [32]
    BUSCA G, LIETTI L, RAMIS G, BERTI F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts:A review[J]. Appl Catal B:Environ, 1998, 18(1/2):1-36. http://www.sciencedirect.com/science/article/pii/S092633739800040X
    [33]
    厉志鹏, 牛胜利, 韩奎华, 路春美.掺杂改性对钙铝基复合物酯交换催化剂吸附性能影响的分子模拟[J].化工学报, 2020, 71(8):3625-3632. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxb202008024

    LI Zhi-peng, NIU Sheng-li, HAN Kui-hua, LU Chun-mei. Molecular simulation of the effect of doping modification on the adsorption properties of calcium-aluminum-based composites ester exchange catalysts[J]. CIESC, 2020, 71(8):3625-3632. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxb202008024
    [34]
    GUO M Y, ZHAO P P, LIU Q L, LIU C X, HAN J F, JI N, SONG C F, MA D G, LU X B, LIANG X Y, LI Z G. Improved low-temperature activity and H2O resistance of Fe-doped Mn-Eu catalysts for NO removal by NH3-SCR[J]. ChemCatChem, 2019, 11(19):4954-4965. doi: 10.1002/cctc.201900979
    [35]
    TRONCONI E, NOVA I, CIARDELLI C, CHATTERJEE D, WEIBEL M. Redox features in the catalytic mechanism of the "standard" and "fast" NH3-SCR of NOx over a V-based catalyst investigated by dynamic methods[J]. J Catal, 2007, 245(1):1-10. http://www.sciencedirect.com/science/article/pii/S002195170600323X
    [36]
    戚飞鸿. Fe-Ti尖晶石低温SCR性能的改进[D].南京: 南京理工大学, 2016.

    QI Fei-hong. Improvement of the activity of Fe-Ti spinel for the selective catalytic reduction of NO with NH3 at low temperatures[D]. Nanjing: Nanjing University of Science and Technology, 2016.
    [37]
    杜晓瑞.铁基尖晶石催化NO还原的实验与机理研究[D].武汉: 华中科技大学, 2019.

    DU Xiao-rui. Experimental and mechanistic studies on catalytic reduction of NO by iron-based spinel[D]. Wuhan: Huazhong University of Science and Technology, 2019.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (300) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return