Volume 48 Issue 8
Aug.  2020
Turn off MathJax
Article Contents
WANG Xiao-sheng, LI Ran-jia, YU Chang-chun, LIU Yu-xiang, XU Chun-ming, LU Chun-xi. Enhanced activity and stability over hierarchical porous mordenite (MOR) for carbonylation of dimethyl ether: Influence of mesopores[J]. Journal of Fuel Chemistry and Technology, 2020, 48(8): 960-969.
Citation: WANG Xiao-sheng, LI Ran-jia, YU Chang-chun, LIU Yu-xiang, XU Chun-ming, LU Chun-xi. Enhanced activity and stability over hierarchical porous mordenite (MOR) for carbonylation of dimethyl ether: Influence of mesopores[J]. Journal of Fuel Chemistry and Technology, 2020, 48(8): 960-969.

Enhanced activity and stability over hierarchical porous mordenite (MOR) for carbonylation of dimethyl ether: Influence of mesopores

Funds:

The project was supported by the Science Foundation of China University of Petroleum, Beijing 2462018YJRC028

the Fundamental Research Funds for the Central Universities, China Postdoctoral Science Foundation 2019M660931

National Natural Science Foundation of China 21908123

State Key Laboratory of Heavy Oil Processing SKLOP 201902006

Shandong Provincial Natural Science Foundation, China ZR2019BB048

More Information
  • Corresponding author: WANG Xiao-sheng, E-mail:wxs880620@cup.edu.cn; LIU Yu-xiang, E-mail:liuyx@qust.edu.cn
  • Received Date: 2020-04-03
  • Rev Recd Date: 2020-08-03
  • Available Online: 2021-01-23
  • Publish Date: 2020-08-10
  • The dimethyl ether (DME) carbonylation reaction over mordenite is greatly affected by the mass transfer process. In this research, hierarchical mordenite catalysts were synthesized and characterized to investigate the influence of mesopores on the structure, mass transfer and catalytic performance. The results show that the medium-strong acid sites decrease while strong acid sites increase over the hierarchical samples. The introduced mesopores can significantly improve the mass transfer efficiency and the carbonylation performances are markedly improved on the hierarchical samples. In addition, the polymerization degree of coke deposition on the deactivated samples decreases although the coke amount increases. Excessive usage of mesopore templates can damage the structure of the MOR catalysts, thus leading to the loss of acid sites and the decrease in catalytic performance.
  • loading
  • [1]
    MAYER F D, FERIS L A, MARCILIO N R, HOFFMANN R. Why small-scale fuel ethanol production in Brazil does not take off[J]. Renewable Sustainable Energy Rev, 2015, 43:687-701. doi: 10.1016/j.rser.2014.11.076
    [2]
    BAEYENS J, KANG Q, APPELS L, DEWIL R, LV Y, TAN, T. Challenges and opportunities in improving the production of bio-ethanol[J]. Prog Energy Combust Sci, 2015, 47:60-88. doi: 10.1016/j.pecs.2014.10.003
    [3]
    HOCHMAN G, ZILBERMAN D. Corn ethanol and US biofuel policy 10 years later:A quantitative assessment[J]. Am J Agr Econ, 2018, 100(2):570-584. doi: 10.1093/ajae/aax105
    [4]
    VARSHAVSKY Y S, CHERKASOVA T G. Remarks on the process of homogeneous carbonylation of rhodium compounds by N, N-dimethylformamide[J]. J Organomet Chem, 2007, 692(4):887-893. doi: 10.1016/j.jorganchem.2006.10.040
    [5]
    THOMAS C M, MAFUA R, THERRIEN B, RUSANOV E, STOEECKLI-EVANS H, SVSS-FINK G. New diphosphine ligands containing ethyleneglycol and amino alcohol spacers for the rhodium-catalyzed carbonylation of methanol[J]. Chem-A European J, 2002, 8(15):3343-3352. doi: 10.1002/1521-3765(20020802)8:15<3343::AID-CHEM3343>3.0.CO;2-Z
    [6]
    VOLKOVA G G, PLYASOVA L M, SALANOV A N, KUSTOVA G N, YURIEVA T M, LIKHOLOBOV V A. Heterogeneous catalysts for halide-free carbonylation of dimethyl ether[J]. Catal Lett, 2002, 80(3):175-179. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5b14d34aaab92390836a1efa864429dc
    [7]
    CHEUNG P, BHAN A, SUNLEY G J, IGLESIA E. Selective carbonylation of dimethyl ether to methyl acetate catalyzed by acidic zeolites[J]. Angew Chem-Int Ed, 2006, 45(10):1617-1620. doi: 10.1002/anie.200503898
    [8]
    BHAN A, ALLIAN A D, SUNLEY G J, LAW D J, IGLESIA E. Specificity of sites within eight-membered ring zeolite channels for carbonylation of methyls to acetyls[J]. J Am Chem Soc, 2007, 129(16):4919-4924. doi: 10.1021/ja070094d
    [9]
    CHEUNG P, BHAN A, SUNLEY G J, LAW D J, IGLESIA E. Site requirements and elementary steps in dimethyl ether carbonylation catalyzed by acidic zeolites[J]. J Catal, 2007, 245(1):110-123. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c7490b111ead8941415872f6955e12b9
    [10]
    BHAN A, IGLESIA E. A link between reactivity and local structure in acid catalysis on zeolites[J]. Acc Chem Res, 2008, 41(4):559-567. doi: 10.1021/ar700181t
    [11]
    SAN X G, ZHANG Y, SHEN W J, TSUBAKI N. New synthesis method of ethanol from dimethyl ether with a synergic effect between the zeolite catalyst and metallic catalyst[J]. Energy Fuels, 2009, 23:2843-2844. doi: 10.1021/ef900080g
    [12]
    ZHANG Y, SAN X G; TSUBAKI N, TAN Y S, CHEN J. Novel ethanol synthesis method via C1 chemicals without any agriculture feedstocks[J]. Ind Eng Chem Res, 2010, 49(11):5485-5488. doi: 10.1021/ie901882s
    [13]
    LI X A, SAN X G, ZHANG Y, ICHII T, MENG M, TAN Y S, TSUBAKI N. Direct synthesis of ethanol from dimethyl ether and syngas over combined H-mordenite and Cu/ZnO catalysts[J]. ChemSusChem, 2010, 3(10):1192-1199. doi: 10.1002/cssc.201000109
    [14]
    YANG G H, SAN X G, JIANG N, TANAKA Y, LI X G, JIN Q, TAO K, MENG F Z, TSUBAKI N. A new method of ethanol synthesis from dimethyl ether and syngas in a sequential dual bed reactor with the modified zeolite and Cu/ZnO catalysts[J]. Catal Today, 2011, 164(1):425-428. doi: 10.1016/j.cattod.2010.10.027
    [15]
    XUE H F, HUANG, X, ZHAN E, MA M, SHEN W J. Selective dealumination of mordenite for enhancing its stability in dimethyl ether carbonylation[J]. Catal Commun, 2013, 37:75-79. doi: 10.1016/j.catcom.2013.03.033
    [16]
    LIU J, XUE H, HUANG X, WU P H, HUANG S J, LIU S B, SHEN W. Stability enhancement of H-mordenite in dimethyl ether carbonylation to methyl acetate by pre-adsorption of pyridine[J]. Chin J Catal, 2010, 31(7):729-738. doi: 10.1016/S1872-2067(09)60081-4
    [17]
    REULE A A C, PRASAD V, SEMAGINA N. Effect of Cu and Zn ion-exchange locations on mordenite performance in dimethyl ether carbonylation[J]. Microporous Mesoporous Mater, 2018, 263:220-230. doi: 10.1016/j.micromeso.2017.12.026
    [18]
    JIA X, KHAN W, WU Z, CHOI J, YIP A C K. Modern synthesis strategies for hierarchical zeolites:Bottom-up versus top-down strategies[J]. Adv Powder Technol, 2019, 30(3):467-484. doi: 10.1016/j.apt.2018.12.014
    [19]
    XUE H F, HUANG X, DITZEL E, ZHAN E S, MA M, SHEN W J. Dimethyl ether carbonylation to methyl acetate over nanosized mordenites[J]. Ind Eng Chem Res, 2013, 52(33):11510-11515. doi: 10.1021/ie400909u
    [20]
    YUAN, Y Y, WANG L, LIU H, TIAN P, YANG M, XU S T, LIU Z M. Facile preparation of nanocrystal-assembled hierarchical mordenite zeolites with remarkable catalytic performance[J]. Chin J Catal, 2015, 36(11):1910-1919. doi: 10.1016/S1872-2067(15)60960-3
    [21]
    WANG X S, LI R J, YU C C, LIU Y X, ZHANG L Y, XU C M, ZHOU H. Enhancing the dimethyl ether carbonylation performance over mordenite catalysts by simple alkaline treatment[J]. Fuel, 2019, 239:794-803. doi: 10.1016/j.fuel.2018.10.147
    [22]
    ALY H M, MOUSTAFA M E, ABDELRAHMAN E A. Synthesis of mordenite zeolite in absence of organic template[J]. Adv Powder Technol, 2012, 23(6):757-760. doi: 10.1016/j.apt.2011.10.003
    [23]
    IDRIS A, KHALIL U, ABDULAZIZ I, MAKERTIHARTHA I G, SUBAGJO, LANIWATI M, AL-BETAR A R, MUKTI R R, MURAZA O. Fabrication zone of OSDA-free and seed-free mordenite crystals[J]. Powder Technol, 2019, 342:992-997. doi: 10.1016/j.powtec.2018.09.041
    [24]
    LÓNYI F, VALYON J. On the interpretation of the NH3-TPD patterns of H-ZSM-5 and H-mordenite[J]. Microporous Mesoporous Mater, 2001, 47(2):293-301. https://www.sciencedirect.com/science/article/pii/S1387181101003894
    [25]
    GRUNDNER S, MARKOVITS M A, LI G, TROMP M, PIDKO E A, HENSEN E J, JENTYS A, SANCHEZ-SANCHEZ M, LERCHER J A. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol[J]. Nat Commun, 2015, 6:7546. doi: 10.1038/ncomms8546
    [26]
    CHENG Z Z, HUANG S Y, LI Y, CAI K, YAO D W, LV J, WANG S P, MA X B. Carbonylation of dimethyl ether over MOR and Cu/H-MOR catalysts:Comparative investigation of deactivation behavior[J]. Appl Catal A:Gen, 2019, 576:1-10. doi: 10.1016/j.apcata.2019.02.032
    [27]
    LI Y, LI Z, HUANG S, CAI K, QU Z, ZHANG J, WANG Y, MA X. Morphology-dependent catalytic performance of mordenite in carbonylation of dimethyl ether:Enhanced activity with high c/b ratio[J]. ACS Appl Mater Interfaces, 2019, 11(27):24000-24005. doi: 10.1021/acsami.9b03588
    [28]
    ZHAO N, TIAN Y, ZHANG L, CHENG Q, LYU S, DING T, HU Z, MA X, LI X. Spacial hindrance induced recovery of over-poisoned active acid sites in pyridine-modified H-mordenite for dimethyl ether carbonylation[J]. Chin J Catal, 2019, 40(6):895-904. doi: 10.1016/S1872-2067(19)63335-8
    [29]
    ZHAO N, CHENG Q, LYU S, GUO L, TIAN Y, DING T, XU J, MA X, LI X. Promoting dimethyl ether carbonylation over hot-water pretreated H-mordenite[J]. Catal Today, 2020, 339:86-92. doi: 10.1016/j.cattod.2019.01.013
    [30]
    GOUNDER R, IGLESIA E. Catalytic consequences of spatial constraints and acid site location for monomolecular alkane activation on zeolites[J]. J Am Chem Soc, 2009, 131(5):1958-1971. doi: 10.1021/ja808292c
    [31]
    BORONAT M, MARTÍNEZ-SÁNCHEZ C, LAW D, CORMA A. Enzyme-like specificity in zeolites:A unique site position in mordenite for selective carbonylation of methanol and dimethyl ether with CO[J]. J Am Chem Soc, 2008, 130(48):16316-16323. doi: 10.1021/ja805607m
    [32]
    BORONAT M, MARTINEZ C, CORMA A. Mechanistic differences between methanol and dimethyl ether carbonylation in side pockets and large channels of mordenite[J]. Phys Chem Chem Phys, 2011, 13(7):2603-2612. doi: 10.1039/c0cp01996h
    [33]
    XUE H, HUANG X, DITZEL E, ZHAN E, MA M, SHEN W. Coking on micrometer-and nanometer-sized mordenite during dimethyl ether carbonylation to methyl acetate[J]. Chin J Catal, 2013, 34(8):1496-1503. doi: 10.1016/S1872-2067(12)60607-X
    [34]
    ZHOU H, ZHU W, SHI L, LIU H, LIU S, NI Y, LIU Y, HE Y, XU S, LI L, LIU Z. In situ DRIFT study of dimethyl ether carbonylation to methyl acetate on H-mordenite[J]. J Mol Catal A:Chem, 2016, 417:1-9. doi: 10.1016/j.molcata.2016.02.032
    [35]
    WANG X S, LI R J, YU C C. ZHANG L, XU C M, ZHOU H. Dimethyl ether carbonylation over nanosheet-assembled hierarchical mordenite[J]. Microporous Mesoporous Mater, 2019, 274: 227-235.
    [36]
    CHAOUATI N, SOUALAH A, CHATER M, TARIGHI M, PINARD L. Mechanisms of coke growth on mordenite zeolite[J]. J Catal, 2016, 344:354-364. doi: 10.1016/j.jcat.2016.10.011
    [37]
    REULE A C, SAWADA J A, SEMAGINA N. Effect of selective 4-membered ring dealumination on mordenite-catalyzed dimethyl ether carbonylation[J]. J Catal, 2017, 349:98-109. doi: 10.1016/j.jcat.2017.03.010
    [38]
    LI Y, SUN C, FAN W, WANG Y, LAN A, HAN P, LI X, DOU T. One-pot synthesis of hierarchical mordenite and its performance in the benzylation of benzene with benzyl alcohol[J]. J Mater Sci, 2015, 50(14):5059-5067. doi: 10.1007/s10853-015-9055-4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (107) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return