Volume 47 Issue 10
Oct.  2019
Turn off MathJax
Article Contents
LIN Min, NA Wei, YE Hai-chuan, HUO Hai-hui, GAO Wen-gui. Effect of additive on CuO-ZnO/SBA-15 catalytic performance of CO2 hydrogenation to methanol[J]. Journal of Fuel Chemistry and Technology, 2019, 47(10): 1214-1225.
Citation: LIN Min, NA Wei, YE Hai-chuan, HUO Hai-hui, GAO Wen-gui. Effect of additive on CuO-ZnO/SBA-15 catalytic performance of CO2 hydrogenation to methanol[J]. Journal of Fuel Chemistry and Technology, 2019, 47(10): 1214-1225.

Effect of additive on CuO-ZnO/SBA-15 catalytic performance of CO2 hydrogenation to methanol

Funds:

the Natural Science Foundation of China 51404122

the Natural Science Foundation of China 51304099

the Natural Key Technologies R & D Program of China 2011BAC01B03

More Information
  • Corresponding author: NA Wei, E-mail: weina@kmust.edu.cn
  • Received Date: 2019-06-25
  • Rev Recd Date: 2019-09-05
  • Available Online: 2021-01-23
  • Publish Date: 2019-10-10
  • Three kinds of porous catalysts CuO-ZnO/SBA-15 (CZ/SBA-15), CuO-ZnO-MnO2/SBA-15 (CZM/SBA-15) and CuO-ZnO-ZrO2/SBA-15 (CZZ/SBA-15) were synthesized by impregnation method with a siliceous framework mesoporous molecular sieve SBA-15. The performance of all catalysts for catalytic hydrogenation of CO2 to methanol was evaluated on a fixed bed reactor, combined with N2 adsorption-desorption (BET), X-ray diffraction (XRD), H2 temperature-programmed reduction (H2-TPR), temperature programmed desorption (H2-TPD, CO2-TPD), N2O titration, X-ray photoelectron spectroscopy (XPS) and transmission electron microscope (TEM). The results show that the introduction of metal oxide in the catalyst changes the pore size and specific surface area of the SBA-15 molecular sieve support. The CuO-ZnO-MnO2/SBA-15 and CuO-ZnO-ZrO2/SBA-15 have high copper dispersion (DCu%), large specific surface area (SCu), small surface CuO particle size, and easy to be reduced. Compared with the Mn-O cluster, the Zr-O cluster enhances the basic site and improves the methanol selectivity. In addition, CuO-ZnO-ZrO2/SBA-15 has the highest oxygen vacancy concentration and better catalytic activity among three catalysts. The methanol selectivity of CuO-ZnO-ZrO2/SBA-15 is 25.02%, which is 28% and 136.9% higher than those of CuO-ZnO/SBA-15 and CuO-ZnO-MnO2/SBA-15, respectively.
  • loading
  • [1]
    唐宏青.煤化工工艺技术评述与展望——Ⅰ.煤气化技术[J].燃料化学学报, 2001, 29(1): 1-5. doi: 10.3969/j.issn.0253-2409.2001.01.001

    TANG Hong-qing. Review and prospect of coal chemical process technology Ⅰ. Coal gasification technology[J]. J Fuel Chem Technol, 2001, 29(1): 1-5. doi: 10.3969/j.issn.0253-2409.2001.01.001
    [2]
    LE H V, PARISHAN S, SAGALTCHIK A, AHI H, TRUNSCHKE A, SCHOM-CKER R, THOMAS A. Stepwise methane-to-methanol conversion on CuO/SBA-15[J]. Chem-Eur J, 2018, 24(48): 12592-12599. doi: 10.1002/chem.201801135
    [3]
    赵信国, 刘广绪.海洋酸化对海洋无脊椎动物的影响研究进展[J].生态学报, 2015, 35(7): 2388-2398. http://d.old.wanfangdata.com.cn/Periodical/stxb201507038

    ZHAO Xin-guo, LIU Guang-xu. Advances in the effects of ocean acidification on marine invertebrates[J]. Acta Ecol Sin, 2015, 35(7): 2388-2398. http://d.old.wanfangdata.com.cn/Periodical/stxb201507038
    [4]
    CARRADO K A, KIM J H, SONG C S, CASTAGNOLA N, MARSHALL C L, SCHWARTZ M M. HDS and deep HDS activity of CoMoS-mesostructured clay catalysts[J]. Catal Today, 2006, 116(4): 478-484. doi: 10.1016/j.cattod.2006.06.033
    [5]
    RAMACHANDRIYA K D, KUNDIYANA D K, WILKINS M R, TERRILL J B, ATIYEH H K, HUHNKE R L. Carbon dioxide conversion to fuels and chemicals using a hybrid green process[J]. Appl Energy, 2013, 112: 289-299. doi: 10.1016/j.apenergy.2013.06.017
    [6]
    TURSUNOV O, KUSTOV L, TILYABAEV Z. Methanol synthesis from the catalytic hydrogenation of CO2 over CuO-ZnO supported on aluminum and silicon oxides[J]. J Taiwan Inst Chem E, 2017, 78: 416-422. doi: 10.1016/j.jtice.2017.06.049
    [7]
    HAYWARD J S, SMITH P J, KONDRAT S A, BOWKER M, HUTCHINGS G J. The effects of secondary oxides on copper-based catalysts for green methanol synthesis[J]. ChemCatChem, 2017, 9: 1655-1662. doi: 10.1002/cctc.201601692
    [8]
    JADHAV S G, VAIDYA P D, BHANAGE B M, JOSHI J B. Catalytic carbon dioxide hydrogenation to methanol: A review of recent studies[J]. Chem Eng Res Des, 2014, 92(11): 2557-2567. doi: 10.1016/j.cherd.2014.03.005
    [9]
    LI Y, CHAN S H, SUN Q. Heterogeneous catalytic conversion of CO2: A comprehensive theoretical review[J]. Nanoscale, 2015, 7(19): 8663-8683. doi: 10.1039/C5NR00092K
    [10]
    ALI K A, ABDULLAH A Z, MOHAMED A R. Recent development in catalytic technologies for methanol synthesis from renewable sources: a critical review[J]. Renewable Sustainable Energy Rev, 2015, 44: 508-518. doi: 10.1016/j.rser.2015.01.010
    [11]
    ARENA F, BARBERA K, ITALIANO G, BONURA G, SPADARO L, FRUSTERI F. Synthesis, characterization and activity pattern of Cu-ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol[J]. J Catal, 2007, 249(2): 185-194. doi: 10.1016/j.jcat.2007.04.003
    [12]
    BONURA G, ARENA F, MEZZATESTA G, CANNILLA C, SPADARO L, FRUSTERI F. Role of the ceria promoter and carrier on the functionality of Cu-based catalysts in the CO2-to-methanol hydrogenation reaction[J]. Catal Today, 2011, 171(1): 251-256. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d742b83da551833422b9beda956ec9c2
    [13]
    KOH M K, KHAVARIAN M, CHAI S P, MOHAMED A R. The morphological impact of siliceous porous carriers on copper-catalysts for selective direct CO2 hydrogenation to methanol[J]. Int J Hydrogen Energy, 2018, 43(19): 9334-9342. doi: 10.1016/j.ijhydene.2018.03.202
    [14]
    KOIZUMI N, JIANG X, KUGAI J, SONG C. Effects of mesoporous silica supports and alkaline promoters on activity of Pd catalysts in CO2 hydrogenation for methanol synthesis[J]. Catal Today, 2012, 194(1): 16-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2a53c75a8f655b6c903ca46e7d498ee9
    [15]
    NANDIYANTO A B D, KIM S G, ISKANDAR F, OKUYAMA K. Synthesis of spherical mesoporous silica nanoparticles with nanometer-size controllable pores and outer diameters[J]. Microporous Mesoporous Mater, 2009, 120(3): 447-453. doi: 10.1016/j.micromeso.2008.12.019
    [16]
    DOS SANTOS S M L, NOGUEIRA K A B, DE SOUZA GAMA M, DINIZ FERREIRA LIMA J, JOSÉ DA SILVA J ÚNIOR I, CRISTINA SILVA DE AZEVEDO D. Synthesis and characterization of ordered mesoporous silica (SBA-15 and SBA-16) for adsorption of biomolecules[J]. Microporous Mesoporous Mater, 2013, 180: 284-292. doi: 10.1016/j.micromeso.2013.06.043
    [17]
    PHONGAMWONG T, CHANTAPRASERTPORN U, WITOON T, NUMPILAI T, POO-ARPORN Y, LIMPHIRAT W, DONPHAI W, DITTANET P, CHAREONPANICH M, LIMTRAKUL J. CO2 hydrogenation to methanol over CuO-ZnO-ZrO2-SiO2 catalysts: Effects of SiO2 contents[J]. Chem Eng J, 2017, 316: 692-703. doi: 10.1016/j.cej.2017.02.010
    [18]
    TOYIR J, DE LA PISCINA P R, FIERRO J L G, HOMS N. Catalytic performance for CO2 conversion to methanol of gallium-promoted copper-based catalysts: Influence of metallic precursors[J]. Appl Catal B: Environ, 2001, 34(4): 255-266. doi: 10.1016/S0926-3373(01)00203-X
    [19]
    CHEN C S, LAI Y T, LAI T W, WU J H, CHEN C H, LEE J F, KAO H M. Formation of Cu nanoparticles in SBA-15 functionalized with carboxylic acid groups and their application in the water-gas shift reaction[J]. ACS Catal, 2013, 3(4): 667-677. doi: 10.1021/cs400032e
    [20]
    JOHANSSON E M, BALLEM M A, CÓRDOBA J M, ODÉN M. Rapid synthesis of SBA-15 rods with variable lengths, widths, and tunable large pores[J]. Langmuir, 2011, 27(8): 4994-4999. doi: 10.1021/la104864d
    [21]
    BJÖRK E M, SÖDERLIND F, ODÉN M. Tuning the shape of mesoporous silica particles by alterations in parameter space: from rods to platelets[J]. Langmuir, 2013, 29(44): 13551-13561. doi: 10.1021/la403201v
    [22]
    BRODIE-LINDER N, DOSSEH G, ALBA-SIMONESCO C, AUDONNET F, IMPÉROR-CLERC M. SBA-15 synthesis: Are there lasting effects of temperature change within the first 10 min of TEOS polymerization?[J]. Mater Chem Phys, 2008, 108(1): 73-81. http://cn.bing.com/academic/profile?id=2afd85e6a20c695e1a28c2bed0cd725f&encoded=0&v=paper_preview&mkt=zh-cn
    [23]
    JOHANSSON E M, CÓRDOBA J M, ODÉN M. The effects on pore size and particle morphology of heptane additions to the synthesis of mesoporous silica SBA-15[J]. Microporous Mesoporous Mater, 2010, 133(1/3): 66-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=626f4a402001f9d48069585f68e118d3
    [24]
    SANTOS S M L, CECILIA J A, VILARRASA-GARCÍA E, SILVA JUNIOR I J, RODRÍGUEZ-CASTELLON E, AZEVEDO D C S. The effect of structure modifying agents in the SBA-15 for its application in the biomolecules adsorption[J]. Microporous Mesoporous Mater, 2016, 232: 53-64. doi: 10.1016/j.micromeso.2016.06.004
    [25]
    WEN C, CUI Y, DAI W L, XIE S, FAN K. Solvent feedstock effect: The insights into the deactivation mechanism of Cu/SiO2 catalysts for hydrogenation of dimethyl oxalate to ethylene glycol[J]. Chem Commun, 2013, 49(45): 5195-5197. doi: 10.1039/c3cc40570b
    [26]
    YE R P, LIN L, LI Q, ZHOU Z, WANG T, RUSSELL C K, ADIDHARMA H, XU Z, YAO Y G, FAN M. Recent progress in improving the stability of copper-based catalysts for hydrogenation of carbon-oxygen bonds[J]. Catal Sci Technol, 2018, 8(14): 3428-3449. doi: 10.1039/C8CY00608C
    [27]
    李志雄, 纳薇, 王华, 高文桂. Cu-Zn-Zr/SBA-15介孔催化剂的制备及CO2加氢合成甲醇的催化性能[J].高等学校化学学报, 2014, 35(12): 2616-2623. doi: 10.7503/cjcu20140684

    LI Zhi-xiong, NA Wei, WANG Hua, GAO Wen-gui. Preparation of Cu-Zn-Zr/SBA-15 mesoporous catalyst and catalytic performance of CO2 hydrogenation to methanol[J]. Chem Res Chin Univ, 2014, 35(12): 2616-2623. doi: 10.7503/cjcu20140684
    [28]
    SŁOCZY'NSKI J, GRABOWSKI R, OLSZEWSKI P, KOZŁOWSKA A, STOCH J, LACHOWSKA M, SKRZYPEK J. Effect of metal oxide additives on the activity and stability of Cu/ZnO/ZrO2 catalysts in the synthesis of methanol from CO2 and H2[J]. Appl Catal A: Gen, 2006, 310: 127-137. doi: 10.1016/j.apcata.2006.05.035
    [29]
    SŁOCZY'NSKI J, GRABOWSKI R, KOZŁOWSKA A, OLSZEWSKI P, LACHOWSKA M, SKRZYPEK J, STOCH J. Effect of Mg and Mn oxide additions on structural and adsorptive properties of Cu/ZnO/ZrO2 catalysts for the methanol synthesis from CO2[J]. Appl Catal A: Gen, 2003, 249(1): 129-138. doi: 10.1016/S0926-860X(03)00191-1
    [30]
    BEHRENS M, STUDT F, KASATKIN I, KVHL S, HÄVECKER M, ABILD-PEDERSEN F, ZANDER S, GIRGSDIES F, KURR P, KNIEP B L, TOVAR M, FISCHER R W, NØRSKOV J K, SCHLÖGL R. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts[J]. Science, 2012, 336(6083): 893-897. doi: 10.1126/science.1219831
    [31]
    ZHU Y, SHI L. Zn promoted Cu-Al catalyst for hydrogenation of ethyl acetate to alcohol[J]. J Ind Eng Chem, 2014, 20(4): 2341-2347. doi: 10.1016/j.jiec.2013.10.010
    [32]
    阴秀丽, 常杰, 汪俊锋, 付严, 梁耀彰. Cu/Zn/Al/Mn催化剂上CO/CO2加氢合成甲醇特性研究[J].燃料化学学报, 2004, 32(4): 492-497. doi: 10.3969/j.issn.0253-2409.2004.04.021

    YIN Xiu-li, CHANG Jie, WANG Jun-feng, FU Yan, LIANG Yao-zhang. Study on characteristics of methanol synthesis by CO/CO2 hydrogenation over Cu/Zn/Al/Mn catalysts[J]. J Fuel Chem Technol, 2004, 32(4): 492-497. doi: 10.3969/j.issn.0253-2409.2004.04.021
    [33]
    HAO A X, YU Y, CHEN H B, MAO C P, WEI S X, YIN Y S. Effect of surface promoters-modifying on catalytic performance of Cu/ZnO/Al2O3 methanol synthesis catalyst[J]. Acta Phys-Chim Sin, 2013, 29(9): 2047-2055. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201309027
    [34]
    WANG G, ZUO Y, HAN M, WANG J. Copper crystallite size and methanol synthesis catalytic property of Cu-based catalysts promoted by Al, Zr and Mn[J]. React Kinet Mech Catal, 2010, 101(2): 443-454. doi: 10.1007/s11144-010-0240-9
    [35]
    WITOON T, CHALORNGTHAM J, DUMRONGBUNDITKUL P, CHAREONPANICH M, LIMTRAKUL J. CO2 hydrogenation to methanol over Cu/ZrO2 catalysts: Effects of zirconia phases[J]. Chem Eng J, 2016, 293: 327-336. doi: 10.1016/j.cej.2016.02.069
    [36]
    ATAKAN A, KERAUDY J, MÄKIE P, HULTEBERG C, BJÖRK E M, ODÉN M. Impact of the morphological and chemical properties of copper-zirconium-SBA-15 catalysts on the conversion and selectivity in carbon dioxide hydrogenation[J]. J Colloid Interface Sci, 2019, 546: 163-173. doi: 10.1016/j.jcis.2019.03.046
    [37]
    MADEJ-LACHOWSKA A, KASPRZYK-MRZYK A, MOROZ H, LACHOWSKI A I, WYZGOŁ H. Synteza metanolu z ditlenku w gla i wodoru na bazie katalizatora CuO/ZnO/ZrO2 z dodatkami[J]. Chemik, 2014, 68(1).
    [38]
    MUNNIK P, WOLTERS M, GABRIELSSON A, POLLINGTON S D, HEADDOCK G, BITTER J H, DE JONGH P E, DE JONG K P. Copper nitrate redispersion to arrive at highly active silica-supported copper catalysts[J]. J Phys Chem C, 2011, 115(30): 14698-14706. doi: 10.1021/jp111778g
    [39]
    MORITZ M, GESZKE-MORITZ M. Mesoporous materials as multifunctional tools in biosciences: Principles and applications[J]. Mater Sci Eng: C, 2015, 49: 114-151. doi: 10.1016/j.msec.2014.12.079
    [40]
    LIU H, HADJLTAIEF H B, BENZINA M, GALVEZ M E, COSTA P D. Natural clay based nickel catalysts for dry reforming of methane: On the effect of support promotion (La, Al, Mn)[J]. Int J Hydrogen Energy, 2019, 44(1): 246-255. doi: 10.1016/j.ijhydene.2018.03.004
    [41]
    LI Y, NA W, WANG H, GAO W. Hydrogenation of CO2 to methanol over Au-CuO/SBA-15 catalysts[J]. J Porous Mater, 2017, 24(3): 591-599. doi: 10.1007/s10934-016-0295-8
    [42]
    LETTOW J S, HAN Y J, SCHMIDT-WINKEL P, YANG P, ZHAO D, STUCKY G D, YING J Y. Hexagonal to mesocellular foam phase transition in polymer-templated mesoporous silicas[J]. Langmuir, 2000, 16(22): 8291-8295. doi: 10.1021/la000660h
    [43]
    LEI H, HOU Z, XIE J. Hydrogenation of CO2 to CH3OH over CuO/ZnO/Al2O3 catalysts prepared via a solvent-free routine[J]. Fuel, 2016, 164: 191-198. doi: 10.1016/j.fuel.2015.09.082
    [44]
    PATHAK T K, KUMAR V, PRAKASH J, PUROHIT L P, SWART H C, KROON R E. Fabrication and characterization of nitrogen doped p-ZnO on n-Si heterojunctions[J]. Sens Actuators A, 2016, 247: 475-481. doi: 10.1016/j.sna.2016.07.002
    [45]
    WANG T, YUAN X, LI S, ZENG L, GONG J. CeO2-modified Au@ SBA-15 nanocatalysts for liquid-phase selective oxidation of benzyl alcohol[J]. Nanoscale, 2015, 7(17): 7593-7602. doi: 10.1039/C5NR00246J
    [46]
    WANG J, LIU Q. A simple method to directly synthesize Al-SBA-15 mesoporous materials with different Al contents[J]. Solid State Commun, 2008, 148(11/12): 529-533. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0d1bd15792b826245b0f22f5ffdf4a58
    [47]
    琚裕波, 张国强, 李安民, 郑华艳, 李忠. Zn对Cu/AC催化剂甲醇氧化羰基化合成碳酸二甲酯催化性能的影响[J].天然气化工: C1化学与化工, 2015, 40(6): 39-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqhg201506008

    JU Yu-bo, ZHANG Cuo-qiang, LI An-ming, ZHENG Hua-yan, LI Zhong. Effect of Zn on catalytic performance of Cu/AC catalyst for oxidative carbonylation of methanol to dimethyl carbonate[J]. Nat Gas Ind, 2015, 40(6): 39-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqhg201506008
    [48]
    GAO P, LI F, ZHAO N, XIAO F, WEI W, ZHONG L, SUN Y. Influence of modifier (Mn, La, Ce, Zr and Y) on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. Appl Catal A: Gen, 2013, 468: 442-452. doi: 10.1016/j.apcata.2013.09.026
    [49]
    HUANG C, CHEN S, FEI X, LIU D, ZHANG Y. Catalytic hydrogenation of CO2 to methanol: Study of synergistic effect on adsorption properties of CO2 and H2 in CuO/ZnO/ZrO2 system[J]. Catalysts, 2015, 5(4): 1846-1861. doi: 10.3390/catal5041846
    [50]
    ZHAN H, LI F, GAO P, ZHAO N, XIAO F, WEI W, ZHONG L, SUN Y. Methanol synthesis from CO2 hydrogenation over La-M-Cu-Zn-O (M=Y, Ce, Mg, Zr) catalysts derived from perovskite-type precursors[J]. J Power Sources, 2014, 251: 113-121. doi: 10.1016/j.jpowsour.2013.11.037
    [51]
    ARENA F, ITALIANO G, BARBERA K, BORDIGA S, BONURA G, SPADARO L, FRUSTERI F. Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH[J]. Appl Catal A: Gen, 2008, 350(1): 16-23. doi: 10.1016/j.apcata.2008.07.028
    [52]
    袁野, 纳薇, 王华, 高文桂.载体Al/Si比对Cu-ZnO-ZrO2催化剂上CO2加氢合成甲醇的影响[J].材料导报, 2017, 30(24): 25-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cldb201624006

    YUAN Ye, NA Wei, WANG Hua, GAO Wen-gui. Effect of Al/Si ratio on hydrogenation of CO2 to methanol over Cu-ZnO-ZrO2 catalyst[J]. Mater Rev, 2017, 30(24): 25-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cldb201624006
    [53]
    蔡迎春, 丑凌军, 张兵, 赵军, 李树本. Mn-CaO催化剂上甲烷-二氧化碳共活化制C2烃研究Ⅱ.催化剂表征及反应机理研究[J].分子催化, 2005, 19(5): 15-19. http://d.old.wanfangdata.com.cn/Periodical/fzch200505002

    CAI Ying-chun, CHOU Ling-jun, ZHANG Bing, ZHAO Jun, LI Shu-ben. Study on co-activation of methane-carbon dioxide to produce C2 hydrocarbons on Mn-CaO catalyst Ⅱ. Characterization and reaction mechanism of catalysts[J]. J Mol Catal, 2005, 19(5): 15-19. http://d.old.wanfangdata.com.cn/Periodical/fzch200505002
    [54]
    LIU Y, SUN K, MA H, XU X, WANG X. Cr, Zr-incorporated hydrotalcites and their application in the synthesis of isophorone[J]. Catal Commun, 2010, 11(10): 880-883. doi: 10.1016/j.catcom.2010.03.014
    [55]
    KOH M K, WONG Y J, CHAI S P, MOHAMED A R. Carbon dioxide hydrogenation to methanol over multi-functional catalyst: Effects of reactants adsorption and metal-oxide(s) interfacial area[J]. J Ind Eng Chem, 2018, 62: 156-165. doi: 10.1016/j.jiec.2017.12.053
    [56]
    PAPAVASILIOU J, AVGOUROPOULOS G, IOANNIDES T. Combined steam reforming of methanol over Cu-Mn spinel oxide catalysts[J]. J Catal, 2007, 251(1): 7-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=81e252253294135a39a8ea1ebe4c8975
    [57]
    ZHAO H, LIN M, FANG K, ZHOU J, LIU Z, ZENG G, SUN Y. A novel Cu-Mn/Ca-Zr catalyst for the synthesis of methyl formate from syngas[J]. RSC Adv, 2015, 5(83): 67630-67637. doi: 10.1039/C5RA13555A
    [58]
    THUNYARATCHATANON C, LUENGNARUEMITCHAI A, CHAISUWAN T, CHOLLACOOP N, CHEN S, YOSHIMURA Y. Synthesis and characterization of Zr incorporation into highly ordered mesostructured SBA-15 material and its performance for CO2 adsorption[J]. Microporous Mesoporous Mater, 2017, 253: 18-28. doi: 10.1016/j.micromeso.2017.06.015
    [59]
    TANG Y, CHEN Y, WU Y, ZHENG M, ZHANG C, YANG M, CAO G. Production of mesoporous materials with high hydrothermal stability by doping metal heteroatoms[J]. Microporous Mesoporous Mater, 2016, 224: 420-425. doi: 10.1016/j.micromeso.2015.11.053
    [60]
    TANG Y, ZONG E, WAN H, XU Z, ZHENG S, ZHU D. Zirconia functionalized SBA-15 as effective adsorbent for phosphate removal[J]. Microporous Mesoporous Mater, 2012, 155: 192-200. doi: 10.1016/j.micromeso.2012.01.020
    [61]
    RHODES M D, BELL A T. The effects of zirconia morphology on methanol synthesis from CO and H2 over Cu/ZrO2 catalysts: Part I. Steady-state studies[J]. J Catal, 2005, 233(1): 198-209. doi: 10.1016/j.jcat.2005.04.026
    [62]
    RHODES M D, POKROVSKI K A, BELL A T. The effects of zirconia morphology on methanol synthesis from CO and H2 over Cu/ZrO2 catalysts: Part Ⅱ. Transient-response infrared studies[J]. J Catal, 2005, 233(1): 210-220. doi: 10.1016/j.jcat.2005.04.027
    [63]
    SOUMINI C, SUGUNAN S, HARIDAS S. Copper oxide modified SBA-15 for the selective vapour phase dehydrogenation of cyclohexanol to cyclohexanone[J]. J Porous Mater, 2019, 26(3): 631-640. doi: 10.1007/s10934-018-0658-4
    [64]
    YANG Y, WANG C, LIU F, SUN X, QIN G, LIU Y, GAO J. Mesoporous electronegative nanocomposites of SBA-15 with CaO-CeO2 for polycarbonate depolymerization[J]. J Mater Sci, 2019, 54(13): 9442-9455. doi: 10.1007/s10853-019-03560-2
    [65]
    LI H, LI K, WANG H, ZHU X, WEI Y, YAN D, CHENG X, ZHAI K. Soot combustion over Ce1-xFexO2-δ and CeO2/Fe2O3 catalysts: Roles of solid solution and interfacial interactions in the mixed oxides[J]. Appl Surf Sci, 2016, 390: 513-525. doi: 10.1016/j.apsusc.2016.08.122
    [66]
    ZENG L, LI K, WANG H, YU H, ZHU X, WEI Y, NING P, SHI C, LUO Y. CO oxidation on Au/α-Fe2O3-hollow catalysts: General synthesis and structural dependence[J]. J Phy Chem C, 2017, 121(23): 12696-12710. doi: 10.1021/acs.jpcc.7b01363
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (666) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return