Volume 48 Issue 10
Oct.  2020
Turn off MathJax
Article Contents
CUI Ying-dan, ZHONG Mei, HALIDAN Maimaiti, XU Bo, WANG Shi-xin. Preparation and structure analysis of medium temperature coal tar pitch-based carbon quantum dots[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1160-1170.
Citation: CUI Ying-dan, ZHONG Mei, HALIDAN Maimaiti, XU Bo, WANG Shi-xin. Preparation and structure analysis of medium temperature coal tar pitch-based carbon quantum dots[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1160-1170.

Preparation and structure analysis of medium temperature coal tar pitch-based carbon quantum dots

Funds:

the National Natural Science Foundation of China 21766035

National Key Research and Development Project 2016YFF0102602

More Information
  • Corresponding author: ZHONG Mei,E-mail:zhongmei0504@126.com; HALIDAN Maimaiti,E-mail:m15899160730@163.com
  • Received Date: 2020-08-10
  • Rev Recd Date: 2020-09-10
  • Available Online: 2021-01-23
  • Publish Date: 2020-10-10
  • The carbon quantum dots (CQDs) were prepared by HNO3 pretreatment combined with ball milling and oxidative stripping by hydrogen peroxide with medium temperature coal tar pitch as the carbon source. In order to determine the suitable reaction conditions, the effects of oxidation time and the amount of hydrogen peroxide on the structure and properties of CQDs were investigated with the yield of CQDs and fluorescence quantum yield as targets. Under the optimum condition with an operating reaction time of 6 h and a H2O2 dosage of 100 mL, the respectively highest yield of CQDs and fluorescence quantum yield of 6.3% and 11.2% is obtained, and the prepared sample is denoted as c-CQDs. Meanwhile, the sample particle size is uniform and in the range of 4-14 nm. When the reaction time is extended to 8 h, the carbon quantum dots (a-CQDs) grow larger because of agglomeration. As the amount of H2O2 increases to 120 mL, the size of carbon quantum dots (b-CQDs) becomes smaller and disorder due to excessive oxidation. Then, the effects of reaction conditions on the structure of CQDs were investigated by XPS, TG-DTG, 13C NMR, Raman and XRD. The results show that the carbon content follows the order of a-CQDs > b-CQDs > c-CQDs, while the content of oxygen is b-CQDs > c-CQDs > a-CQDs. According to XPS analysis, the major form of carbon in CQDs is the aromatic carbon. It is noted that the maximum amount of C=O and O-C=O is obtained with the c-CQDs, while the higest value of C-O appears with the b-CQDs. The Xb characterized by 13C NMR characterization illustrates that the average aromatic ring size is about 0.5, and correspondingly, the average number of aromatic rings is about 3.
  • loading
  • [1]
    于殿伟.煤焦油深加工中的环境风险问题及防范策略[J].化学工程与装备, 2019, 48(9):280-281. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fjhg201909128

    YU Dian-wei. Environmental risk problems and prevention strategies in coal tar deep processing[J]. Chem Eng Eqpt, 2019, 48(9):280-281. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fjhg201909128
    [2]
    赵亚楠.初探煤沥青及其应用[J].炭素, 2019, 42(3):31-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ts201903008

    ZHAO Ya-nan. Preliminary exploration of coal bitumen and its application[J]. Carbon, 2019, 42(3):31-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ts201903008
    [3]
    张立中.煤炭开采对环境的污染与清洁开采技术[J].资源节约与环保, 2019, 39(11):92. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zyjyyhb201911080

    ZHANG Li-zhong. Environmental pollution caused by coal mining and clean mining technology[J]. Res Econom Environ Prot, 2019, 39(11):92. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zyjyyhb201911080
    [4]
    周云辉, 谷小虎, 林雄超.煤焦油沥青基炭材料的研究进展[J].炭素技术, 2019, 38(2):6-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tsjs201902001

    ZHOU Yun-hui, GU Xiao-hu, LIN Xiong-chao. Research development of carbon materials from coal tar pitch[J]. Carbon Techol, 2019, 38(2):6-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tsjs201902001
    [5]
    YE R, XING C, LIN J, PENG Z, HUANG K, YAN Z, COOK N P, SAMUEL E, HWANG C, RUAN G, CERIOTTI G, RAJI A, MARTI A, TOUR J. Coal as an abundant source of graphene quantum dots[J]. Nat Commun, 2013, 4(1):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=df597f5d181906253e26aec45a5dd0e5
    [6]
    HU S, MENG X, TIAN F, YANG W L, LI N, XUE C R, YANG J L, CHANG Q. Dual photoluminescence centers from inorganic-salt-functionalized carbon dots for ratiometric pH sensing[J]. J Mater Chem C, 2017, 5(38):9849-9853. doi: 10.1039/C7TC03266H
    [7]
    LIU Y, HUI H, CAO W, MAO B, LIU Y, KANG Z. Advances in carbon dots:From the perspective of traditional quantum dots[J]. Mater Chem Front, 2020, 4(6):1586-1613. doi: 10.1039/D0QM00090F
    [8]
    IRAVANI S, VARMA R S. Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots. A review[J]. Environ Chem Lett, 2020, 18(3):703-727.
    [9]
    RÖDING M, BRADLEY S J, NYDEN M, NANN T. Fluorescence lifetime analysis of graphene quantum dots[J]. J Phys Chem C, 2014, 118(51):30282-30290. doi: 10.1021/jp510436r
    [10]
    SAIKIA M, DAS T, DIHINGIA N, FAN X, SILVA L F, SAIKIA B K. Formation of carbon quantum dots and graphene nanosheets from different abundant carbonaceous materials[J]. Diam Relat Mater, 2020, 30(106):107813-107822. http://www.sciencedirect.com/science/article/pii/S0925963519309021
    [11]
    KHAN Z G, PATIL P O. A comprehensive review on carbon dots and graphene quantum dots based fluorescent sensor for biothiols[J]. Microchem J, 2020, 64(157):105011-105022. http://www.sciencedirect.com/science/article/pii/S0026265X20305592
    [12]
    HE P, SHI Y, MENG T, YUAN T, LI Y, LI X, ZHANG Y, FAN L, YANG S. Recent advances in white light-emitting diodes of carbon quantum dots[J]. Nanoscale, 2020, 12(8):4826-4832. doi: 10.1039/C9NR10958G
    [13]
    HAN W, LI D, ZHANG M, HU X, DUAN X, LIU S, WANG S. Photocatalytic activation of peroxymonosulfate by surface-tailored carbon quantum dots[J]. J Hazard Mater, 2020, 46(395):122695-122703. http://www.researchgate.net/publication/340637352_Photocatalytic_activation_of_peroxymonosulfate_by_surface-tailored_carbon_quantum_dots
    [14]
    李跃辉.煤沥青基碳量子点的制备及荧光检测中的应用[D].大连: 大连理工大学, 2017.

    LI Yue-hui. Preparation and fluorescence detection of coal tar pitch based carbon quantum dots[D]. Dalian: Dalian University of Technology, 2017.
    [15]
    孟勋.煤基荧光碳点的制备及其性能调控[D].太原: 中北大学, 2017.

    MENG Xun. Preparation and performance control of coal based fluorescent carbon dots[D]. Taiyuan: North University China, 2017.
    [16]
    苏英杰, 高丽娟, 乔小琴, 龚晓飞, 程俊霞.水溶性沥青基碳量子点测Cu2+的条件优化[J].辽宁科技大学学报, 2017, 40(4):270-273. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=asgtxyxb201704006

    SU Ying-jie, GAO Li-juan, QIAO Xiao-qin, GONG Xiao-fei, CHENG Jun-xia. Conditions optimization of detection of Cu2+ ion using carbon quantum dots from water-soluble pitch[J]. J Univ Sci Technol Liaoning, 2017, 40(4):270-273. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=asgtxyxb201704006
    [17]
    WANG H, NING G, HE X, MA X, YANG F, XU Z, ZHAO S, XU C, LI Y. Carbon quantum dots derived by direct carbonization of carbonaceous microcrystals in mesophase pitch[J]. Nanoscale, 2018, 10(45):21492-21498. doi: 10.1039/C8NR07385F
    [18]
    CHENG Y, BAI M, SU J, FANG C, LI H, CHEN J, JIAO J. Synthesis of fluorescent carbon quantum dots from aqua mesophase pitch and their photocatalytic degradation activity of organic dyes[J]. J Mater Sci Technol, 2019, 35(8):1515-1522. doi: 10.1016/j.jmst.2019.03.039
    [19]
    KWON W, DO S, LEE J, HWANG S, KIM J K, RHEE S W. Freestanding luminescent films of nitrogen-rich carbon nanodots toward large-scale phosphor-based white-light-emitting devices[J]. Chem Mater, 2013, 25(9):1893-1899. doi: 10.1021/cm400517g
    [20]
    LI H T, KANG Z H, LIU Y, LEE S T. Carbon nanodots:Synthesis, properties and applications[J]. J Mater Chem, 2012, 22(46):24230-24253. doi: 10.1039/c2jm34690g
    [21]
    KATOH R, SUZUKI K, FURUBE A, KOTANI M, TOKUMARU K. Fluorescence quantum yield of aromatic hydrocarbon crystals[J]. J Phys Chem C, 2012, 113(7):2961-2965. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=553990ce474b9674b855167660b644bb
    [22]
    HU S, WEI Z, CHANG Q, TRINCHI A, YANG J. A facile and green method towards coal-based fluorescent carbon dots with photocatalytic activity[J]. Appl Surf Sci, 2016, 378(15):402-407. http://www.sciencedirect.com/science/article/pii/S0169433216307796
    [23]
    LI H, HE X, KANG Z, HUANG H, LIU Y, LIU J, LIAN S, TSANG C, YANG X, LEE S. Water-soluble fluorescent carbon quantum dots and photocatalyst design[J]. Angew Chem Int Ed, 2010, 49(122):4532-4536. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a664bb360ca44e29b261b7a289538104
    [24]
    胡超.基于煤炭及其衍生产物的荧光碳点制备与应用研究[D].大连: 大连理工大学, 2015.

    HU Chao.Synthesis and application of fluorescent carbon dots from coal and its derivatives[D]. Dalian: Dalian University of Technology, 2015.
    [25]
    HU S, WEI Z, CHANG Q, TRINCHI A, YANG J. A facile and green method towards coal-based fluorescent carbon dots with photocatalytic activity[J]. Appl Surf Sci, 2016, 378(15):402-407. http://www.sciencedirect.com/science/article/pii/S0169433216307796
    [26]
    ZHOU X, ZHANG Y, WANG C, WU X, YANG Y, ZHENG B, WU H, GUO S, ZHANG J. Photo-fenton reaction of graphene oxide:A new strategy to prepare graphene quantum dots for DNA cleavage[J]. ACS Nano, 2012, 6(8):6592-6599. doi: 10.1021/nn301629v
    [27]
    闫金定, 崔洪, 杨建丽, 刘振宇.热重质谱联用研究兖州煤的热解行为[J].中国矿业大学学报, 2003, 32(3):311-315. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkydxxb200303023

    YAN Jin-ding, CUI Hong, YANG Jian-li, LIU Zhen-yu.Research on pyrolysis behavior of yanzhou coal using TG/MS[J]. J China Univ Min Technol, 2003, 32(3):311-315. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkydxxb200303023
    [28]
    刘春法, 单长春, 杜勇, 高晋生.不同馏程闪蒸油制预炭化沥青的热解行为及其性质研究[J].上海化工, 2007, 32(4):14-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shhg200704006

    LIU Chun-fa, SHAN Chang-chun, DU Yong, GAO Jin-sheng. The study of the property and thermal destruction characteristics of condensation pitchs of two differential distillation Range's flash oil[J]. Shanghai Chem Ind, 2007, 32(4):14-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shhg200704006
    [29]
    MEWADA A, PANDEY S, SHINDE S, MISHRA N, OZA G, THAKUR M, SHARON M, SHARON M. Green synthesis of biocompatible carbon dots using aqueous extract of Trapa bispinosa peel[J]. Mat Sci Eng C, 2013, 33(5):2914-2917. doi: 10.1016/j.msec.2013.03.018
    [30]
    TONG J H, HAN X X, WANG S, JIANG X M. Evaluation of structural characteristics of Huadian oil shale kerogen using direct techniques (solid-state 13C-NMR, XPS, FT-IR, and XRD)[J]. Energy Fuels, 2011, 25(9):4006-4013. doi: 10.1021/ef200738p
    [31]
    李同起, 杨晓光, 许正辉, 孙银洁, 王晓叶.样品位置对炭材料XRD测试结果的影响[J].宇航材料工艺, 2009, 39(4):76-80. http://d.wanfangdata.com.cn/Periodical/yhclgy200904020

    LI Tong-qi, YANG Xiao-guang, XU Zheng-hui, SUN Yin-jie, WANG Xiao-ye. Influence of testing position on XRD results of carbon material[J]. Aerospace Mater Technol, 2009, 39(4):76-80. http://d.wanfangdata.com.cn/Periodical/yhclgy200904020
    [32]
    DONG Y, PANG H, YANG H B, GUO C X, SHAO J W, CHI Y W, LI C M, YU T. Carbon-based dots Co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission[J]. Angew Chem Int Ed, 2013, 52(30):7800-7804. doi: 10.1002/anie.201301114
    [33]
    DOU X, LIN Z, CHEN H, ZHENG Y, LU C, LIN J. Production of superoxide anion radicals as evidence for carbon nanodots acting as electron donors by the chemiluminescence method[J]. Chem Comm, 2013, 49(52):5871-5873. doi: 10.1039/c3cc41145a
    [34]
    GONG Y, YU B, YANG W, ZHANG X. Phosphorus, and nitrogen co-doped carbon dots as a fluorescent probe for real-time measurement of reactive oxygen and nitrogen pecies inside macrophages[J]. Biosens Bioelectron, 2016, 27(79):822-828. http://smartsearch.nstl.gov.cn/paper_detail.html?id=0e32c7f9d40182353e2691a395f3d959
    [35]
    LI L, LU C, LI S, LIU S, WANG L, CAI W, XU W, YANG X, LIU Y, ZHANG R. A high-yield and versatile method for the synthesis of carbon dots for bioimaging applications[J]. J Mater Chem B, 2017, 5(10):1935-1942. doi: 10.1039/C6TB03003C
    [36]
    崔瀛丹, 钟梅, 哈丽丹·买买提, 杨超, 樊星.中温煤焦油沥青逐级萃取的产物组成与结构分析[J].煤炭学报, 2020.

    CUI Ying-dan, ZHONG Mei, HALIDAN-Maimaiti, YANG Chao, FAN Xing. The composition and structure analysis of products from the suquential extraction process of medium temperature coal tar pitch[J]. J China Coal Soc, 2020, in press.
    [37]
    WANG Y G, WEI X Y, XIE R L, LIU F J, LI P, ZONG Z M. Structural characterization of typical organic species in Jincheng No. 15 anthracite[J]. Energy Fuels, 2015, 29(2):595-601. doi: 10.1021/ef502373p
    [38]
    SONG C, HOU L, SAINI A K, HATCHER P G, SCHOBERT H H. CPMAS 13C NMR and pyrolysis-GC-MS studies of structure and liquefaction reactions of Montana subbituminous coal[J]. Fuel Process Technol, 1993, 34(3):249-276. http://www.sciencedirect.com/science/article/pii/037838209390069G
    [39]
    SOLUM M S, PUGMIRE R J, GRANT D M. Carbon-13 solid-state NMR of Argonne-premium coals[J]. Energy Fuels, 1989, 3(2):187-193. doi: 10.1021/ef00014a012
    [40]
    ZHU W, ZHANG J, JIANG Z, WANG W, LIU X. High-quality carbon dots:synthesis, peroxidase-like activity and their application in the detection of H2O2, Ag+ and Fe3+[J]. Rsc Adv, 2014, 4(33):17387-17392. doi: 10.1039/C3RA47593J
    [41]
    GHAZALEH A, PAYAM A, MASRINDA T S. The effect of alumina and magnesia supported germanium nanoparticles on the growth of carbon nanotubes in the chemical vapor deposition method[J]. J Nanomater, 2015, 10(8):961231-961236. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004027595
    [42]
    ZHANG Y, XIE C, GU F, WU H, GUO Q. Significant visible-light photocatalytic enhancement in Rhodamine B degradation of silver orthophosphate via the hybridization of N-doped graphene and poly (3-hexylthiophene)[J]. J Hazard Mater, 2016, 315(5):23-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e1b98f4aeaff9d0118cc8d7272a7f56a
    [43]
    SHEN C, SUN Y, WANG J, LU Y. Facile route to highly photoluminescent carbon nanodots for ion detection, pH sensors and bioimaging[J]. Nanoscale, 2014, 6(15):9139-9147. doi: 10.1039/C4NR02154A
    [44]
    YOUH M J, JIANG M Y, CHUNG M C, TAI H C, LI Y Y. Formation of graphene quantum dots by ball-milling technique using carbon nanocapsules and sodium carbonate[J]. Inorg Chem Commun, 2020, 23(119):108061-108065. http://www.sciencedirect.com/science/article/pii/S1387700320306511
    [45]
    LIN L, ZHANG S. Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes[J]. Chem Commun, 2012, 48(82):10177-10179. doi: 10.1039/c2cc35559k
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (237) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return