Volume 48 Issue 1
Jan.  2020
Turn off MathJax
Article Contents
WANG Si-hua, ZU Yun, QIN Yu-cai, ZHANG Xiao-tong, SONG Li-juan. Fabrication of effective desulfurization species active sites in the CeY zeolites and the adsorption desulfurization mechanisms[J]. Journal of Fuel Chemistry and Technology, 2020, 48(1): 52-62.
Citation: WANG Si-hua, ZU Yun, QIN Yu-cai, ZHANG Xiao-tong, SONG Li-juan. Fabrication of effective desulfurization species active sites in the CeY zeolites and the adsorption desulfurization mechanisms[J]. Journal of Fuel Chemistry and Technology, 2020, 48(1): 52-62.

Fabrication of effective desulfurization species active sites in the CeY zeolites and the adsorption desulfurization mechanisms

Funds:

the National Natural Science Foundation of China U1662135

the National Natural Science Foundation of China 21376114

  • Received Date: 2019-08-19
  • Rev Recd Date: 2019-10-28
  • Available Online: 2021-01-23
  • Publish Date: 2020-01-10
  • A series of CeY zeolites with different cerium loadings and calcined at different temperatures were prepared and used as the adsorbent for the desulfurization of thiophene containing model oil. The CeY zeolites were characterized by XRD, N2 sorption, FT-IR spectroscopy and GC-SCD and GC-MSD techniques. The effects of aromatics and olefins on the adsorption desulfurization performance were investigated and the active species and reaction mechanism for the adsorption desulfurization on CeY zeolites were probed. The results indicate that the CeY zeolite calcined at 150 ℃ is provided with a large number of Brönsted acid sites and hydroxylated cerium species in the supercages, which can synergistically promote the thiophene oligomerization and then enhance the sulfur breakthrough adsorption capacity (18.45 mg (S)/g). However, a further increase in the calcination temperature and cerium loading may greatly reduce the number of active sites for the adsorption desulfurization and suppress the thiophene oligomerization reaction, leading to a significant decrease in the sulfur breakthrough adsorption capacity (4.03 mg (S)/g). For the thiophene model oils containing low concentration of 1-hexene (< 1.0%) or benzene (< 0.1%), the CeY-12.3-150 zeolite (with a cerium loading of 12.3% and calcined at 150 ℃) also exhibits a relatively high sulfur breakthrough adsorption capacity. However, a further increase in the content of 1-hexene or benzene in the feed may lead to a sharp decrease in the sulfur breakthrough adsorption capacity, due to the alkylation of thiophene and the adsorption mode of "S-H" bonding.
  • loading
  • [1]
    杨永坛, 杨海鹰, 宗保宁, 陆婉珍.催化裂化汽油中硫化物的气相色谱-原子发射光谱分析方法及应用[J].分析化学, 2003, 31(10):1153-1158. doi: 10.3321/j.issn:0253-3820.2003.10.001

    YANG Yong-tan, YANG Hai-ying, ZONG Bao-ning, LU Wan-zhen. Determination and distribution of sulfur compounds in gasoline by gas chromatography-atomic emission detector[J]. Chin J Anal Chem, 2003, 31(10):1153-1158. doi: 10.3321/j.issn:0253-3820.2003.10.001
    [2]
    杨永坛, 王征.焦化汽油中硫化物类型分布的气相色谱-硫化学发光检测方法[J].色谱, 2007, 25(3):384-388. doi: 10.3321/j.issn:1000-8713.2007.03.021

    YANG Yong-tan, WANG Zheng. Determination and distribution of sulfur compounds in coked gasoline by gas chromatography-sulfur chemiluminescence detection[J]. Chin J Chromatogr, 2007, 25(3):384-388. doi: 10.3321/j.issn:1000-8713.2007.03.021
    [3]
    朱丽君, 夏道宏, 项玉芝, 周玉路.加氢焦化汽油硫化合物组成分析[J].石油与天然气化工, 2009, 38(6):494-497. doi: 10.3969/j.issn.1007-3426.2009.06.009

    ZHU LI-jun, XIA Dao-hong, XIANG Yu-zhi, ZHOU Yu-lu. Composition analysis of sulfur compounds in hydrocoking gasoline[J]. Chem Eng Oil Gas, 2009, 38(6):494-497. doi: 10.3969/j.issn.1007-3426.2009.06.009
    [4]
    SONG C S. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel[J]. Catal Today, 2003, 86(1):211-263. doi: 10.1016-S0920-5861(03)00412-7/
    [5]
    DEHGHAN R, ANBIA M. Zeolites for adsorptive desulfurization from fuels:A review[J]. Fuel Process Technol, 2017, 167:99-116. doi: 10.1016/j.fuproc.2017.06.015
    [6]
    TAN P, JIANG Y, SUN L B, LIU X Q, ALBAHILY K, RAVON U, VINU A. Design and fabrication of nanoporous adsorbents for the removal of aromatic sulfur compounds[J]. J Mater Chem A, 2018, 6(47):23978-24012. doi: 10.1039/C8TA09184F
    [7]
    VELU S, MA X L, SONG C S. Selective adsorption for removing sulfur from jet fuel over zeolite-based adsorbents[J]. Ind Eng Chem Res, 2003, 42(21):5293-5304. doi: 10.1021/ie020995p
    [8]
    LIN L G, ZHANG Y Z, ZHANG H Y, LU F W. Adsorption and solvent desorption behavior of ion-exchanged modified Y zeolites for sulfur removal and for fuel cell applications[J]. J Colloid Interf Sci, 2011, 360(2):753-759. doi: 10.1016/j.jcis.2011.04.075
    [9]
    WANG H G, SONG L J, JIANG H, XU J, JIN L L, ZHANG X T, SUN Z L. Effects of olefin on adsorptive desulfurization of gasoline over Ce(Ⅳ)Y zeolites[J]. Fuel Process Technol, 2009, 90(6):835-838. doi: 10.1016/j.fuproc.2009.03.004
    [10]
    DUAN L H, GAO X H, MENG X H, ZHANG H T, WANG Q, QIN Y C, ZHANG X T, SONG L J. Adsorption, co-adsorption, and reactions of sulfur compounds, aromatics, olefins over Ce-exchanged Y zeolite[J]. J Phys Chem C, 2012, 116(49):25748-25756. doi: 10.1021/jp303040m
    [11]
    QIN Y C, MO Z S, YU W G, DONG S W, DUAN L H, GAO X H, SONG L J. Adsorption behaviors of thiophene, benzene, and cyclohexene on FAU zeolites:Comparison of CeY obtained by liquid-, and solid-state ion exchange[J]. Appl Surf Sci, 2014, 292:5-15. doi: 10.1016/j.apsusc.2013.11.036
    [12]
    ZU Y, ZHANG C, QIN Y C, ZHANG X T, ZHANG L, LIU H H, GAO X H, SONG L J. Ultra-deep adsorptive removal of thiophenic sulfur compounds from FCC gasoline over the specific active sites of CeHY zeolite[J]. J Energy Chem, 2019, 39:256-267. doi: 10.1016/j.jechem.2019.04.010
    [13]
    ZU Y, HUI Y, QIN Y C, ZHANG L, LIU H H, ZHANG X T, GUO Z S, SONG L J, GAO X H. Facile Fabrication of effective cerium (Ⅲ) hydroxylated species as adsorption active sites in CeY zeolite adsorbents towards ultra-deep desulfurization[J]. Chem Eng J, 2019, 375:122014. doi: 10.1016/j.cej.2019.122014
    [14]
    SHI Y C, ZHANG W., ZHANG H X, TIAN F P, JIA C Y, CHEN Y Y. Effect of cyclohexene on thiophene adsorption over NaY and LaNaY zeolites[J]. Fuel Process Technol, 2013, 110:24-32. doi: 10.1016/j.fuproc.2013.01.008
    [15]
    SHI Y C, YANF X J, TIAN F P, JIA C Y, CHEN Y Y. Effects of toluene on thiophene adsorption over NaY and Ce(Ⅳ)Y zeolites[J]. J Nat Gas Chem, 2012, 21(4):421-425. doi: 10.1016/S1003-9953(11)60385-X
    [16]
    王祥生, 罗国华. HZSM-5沸石上焦化苯的精制脱硫[J].催化学报, 1996, 17(6):530-534.

    WANG Xiang-sheng, LUO Guo-hua. The removal of thiophene from coking benzene over HZSM-5 zeolite[J]. Chin J Catal, 1996, 17(6):530-534.
    [17]
    WANG J, XU F, XIE W J, MEI J Z, ZHANG Q Z, CAI J, CAI W M. The enhanced adsorption of dibenzothiophene onto cerium/nickel-exchanged zeolite Y[J]. J Hazard Mater, 2009, 163(2/3):538-543.
    [18]
    秦玉才, 高雄厚, 段林海, 范跃超, 于文广, 张海涛, 宋丽娟.酸催化及竞争吸附对CeY分子筛吸附脱硫性能的影响[J].物理化学学报, 2014, 30(3):544-550. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201403021

    QIN Yu-cai, GAO Xiong-hou, DUAN Lin-hai, FAN Yue-chao, YU Wen-guang, ZHANG Hai-tao, SONG Li-juan. Effects on adsorption desulfurization of CeY zeolites:Acid catalysis and competitive adsorption[J]. Acta Phys-Chim Sin, 2014, 30(3):544-550. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201403021
    [19]
    LI J C, ZENG P H, ZHAO L, REN S Y, GUO Q X, ZHANG H J, WANG B J, LIU H H, PANG X M, GAO X H, SHEN B J. Tuning of acidity in CeY catalytic cracking catalysts by controlling the migration of Ce in the ion exchange step through valence changes[J]. J Catal, 2015, 329:441-448. doi: 10.1016/j.jcat.2015.06.012
    [20]
    LIAO J J, BAO W R, CHANG L P. An approach to study the desulfurization mechanism and the competitive behavior from aromatics:A case study on CeY zeolite[J]. Fuel Process Technol, 2015, 140:104-112. doi: 10.1016/j.fuproc.2015.08.036
    [21]
    LIAO J J, WANG Y, CHANG L P, BAO W R. A process for desulfurization of coking benzene by a two-step method with reuse of sorbent/thiophene and its key procedures[J]. Green Chem, 2015, 17(5):3164-3175. doi: 10.1039/C4GC02505A
    [22]
    DU X H, GAO X H, Zhang H T, LI X L, LIU P S. Effect of cation location on the hydrothermal stability of rare earth-exchanged Y zeolites[J]. Catal Commun, 2013, 35:17-22. doi: 10.1016/j.catcom.2013.02.010
    [23]
    KIM C W, KANG H C, HEO N H, SEFF K. Encapsulating photoluminescent materials in zeolites. Ⅱ. Crystal structure of fully dehydrated Ce21H46O18-Y (Si/Al=1.69) containing Ce4O44+, CeOH2+, Ce3+, and H+[J]. J Phys Chem C, 2015, 119(43):24501-24511. doi: 10.1021/acs.jpcc.5b08373
    [24]
    LEE E F T, REES L V C. Calcination of cerium (Ⅲ) exchanged Y zeolite[J]. Zeolites, 1987, 7(5):446-450. doi: 10.1016/0144-2449(87)90013-3
    [25]
    NERJ J G, MASCARENHAS Y P, BONAGAMBA T J, Mello N C, SOUZA-AGUIAR E F. Location of cerium and lanthanum cations in CeNaY and LaNaY after calcination[J]. Zeolites, 1997, 18:44-49. doi: 10.1016/S0144-2449(96)00094-2
    [26]
    BOLTON A P. The nature of rare-earth exchanged Y zeolites[J]. J Catal, 1971, 22(1):9-15. doi: 10.1016/0021-9517(71)90259-4
    [27]
    WANG N N, WANG Y, CHENG H F, FU M E, TAO Z, WU W Z. Relationship between two characteristic diffractions and the status of cationic lanthanum species in zeolite LaNaY[J]. J Porous Mater, 2013, 20(5):1371-1378. doi: 10.1007/s10934-013-9723-1
    [28]
    QIU L M, FU Y, ZHENG J Y, HUANG N G, LU L J, GAO X Z, XIN M D, LUO Y B, SHI Y Q, XU G T. Investigation on the cation location, structure and performances of rare earth-exchanged Y zeolite[J]. J Rare Earths, 2017, 35(7):658-666. doi: 10.1016/S1002-0721(17)60960-8
    [29]
    WANG M, JAEGERS N R, LEE M S, WAN C, HU J Z, SHI H, MEI D H, BURTON S D, CAMAIONI D M, GUTIERREZ O Y, GLEZAKOU V A, ROUSSEAU R, WANG Y, LERCHER J A. Genesis and stability of hydronium ions in zeolite channels[J]. J Am Chem Soc, 2019, 141(8):3444-3455. doi: 10.1021/jacs.8b07969
    [30]
    祖运, 秦玉才, 高雄厚, 莫周胜, 张磊, 张晓彤, 宋丽娟.催化裂化条件下噻吩与改性Y分子筛的作用机制[J].燃料化学学报, 2015, 43(7):862-869. doi: 10.3969/j.issn.0253-2409.2015.07.012

    ZU Yun, QIN Yu-cai, GAO Xiong-hou, MO Zhou-sheng, ZHANG Lei, ZHANG Xiao-tong, SONG Li-juan. Mechanisms of thiophene conversion over the modified Y zeolites under catalytic cracking conditions[J]. J Fuel Chem Technol, 2015, 43(7):862-869. doi: 10.3969/j.issn.0253-2409.2015.07.012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (215) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return