Volume 45 Issue 8
Aug.  2017
Turn off MathJax
Article Contents
WEI Shao-qing, TENG Yang, LI Xiao-hang, SU Yin-jiao, YANG Wei, ZHANG Kai. Comparison of mercury emission from around 300 MW coal-fired power generation units between pulverized boiler and circulating fluidized-bed boiler[J]. Journal of Fuel Chemistry and Technology, 2017, 45(8): 1009-1016.
Citation: WEI Shao-qing, TENG Yang, LI Xiao-hang, SU Yin-jiao, YANG Wei, ZHANG Kai. Comparison of mercury emission from around 300 MW coal-fired power generation units between pulverized boiler and circulating fluidized-bed boiler[J]. Journal of Fuel Chemistry and Technology, 2017, 45(8): 1009-1016.

Comparison of mercury emission from around 300 MW coal-fired power generation units between pulverized boiler and circulating fluidized-bed boiler

Funds:

the National Natural Science Foundation of China U1610254

the Major Special Project of Shanxi Province MD2015-01

the Fundamental Research Funds for the Central Universities 2017MS020

  • Received Date: 2017-01-24
  • Rev Recd Date: 2017-06-27
  • Available Online: 2021-01-23
  • Publish Date: 2017-08-10
  • The mercury emission characteristics are investigated and compared at a coal-fired power plant with 330 MW pulverized coal (PC) boiler and a coal-fired power plant with 350 MW circulating fluidized bed (CFB) boiler. EPA 30B method and Ontario method were used to test the mercury concentration in flue gas at the inlet of dust extraction unit, outlet of dust extraction unit, outlet of desulfurization unit, and outlet of wet dust extraction unit. The feed coal, bottom ash, fly ash and gypsum sample were collected at the same time together with gas sampling. The effect of the existing air pollution control device on mercury control was discussed toward PC and CFB units based on the mercury distribution data. The results show that the mercury concentration at fabric filter (FF) outlet of CFB power plant is decreased to 0.43 μg/m3 and the mercury removal efficiency of FF reaches 98.9%. A predominating portion of mercury is enriched in fly ash. With respect to a PC power plant, the mercury concentrations at inlet and outlet of ESP are both higher than those in the CFB power plant, and the mercury concentration gradually drops from electrostatic precipitator (ESP) inlet to wet flue gas desulfurization (WFGD) outlet. The mercury concentration reaches a low value of 0.42 μg/m3 at the WFGD outlet, and the mercury removal efficiency of ESP and WFGD is 75.0% and 22.4%, respectively, which can meet the ultra low mercury emission controlling.
  • loading
  • [1]
    杨爱勇, 严智操, 惠润堂, 申智勇, 庄柯.中国煤中汞的含量、分布与赋存状态研究[J].科学技术与工程, 2015, 15(32): 93-100. http://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201532017.htm

    YANG Ai-yong, YAN Zhicao, HUI Runtang, SHEN Zhiyong, ZHUANG Ke. The abundance, distribution, and modes of occurrence of Hg in Chinese coals[J]. Sci Technol Eng, 2105, 15(32): 93-100. http://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201532017.htm
    [2]
    国家环境保护部. GB13223—2011火电厂大气污染物排放标准[S]. 北京: 中国标准出版社, 2011.

    Ministry of Environmental Protection. GB13223—2011 Pollutant emission standard in thermal power plant[S]. Beijing: Standards Press of China, 2011.
    [3]
    WU S, YANG W, ZHOU J, WANG H, XIE Z. Effects of properties of activated carbon on its activity for mercury removal and mercury desorption from used activated carbons[J]. Energy Fuels, 2015, 29(3): 1946-1950. doi: 10.1021/ef502868s
    [4]
    WANG S, ZHANG Y, GU Y, WANG J, LIU Z, ZHANG Y, CAO Y, ROMERO C E, PAN W. Using modified fly ash for mercury emissions control for coal-fired power plant applications in China[J]. Fuel, 2016, 181: 1230-1237. doi: 10.1016/j.fuel.2016.02.043
    洪亚光, 段钰锋, 朱纯, 周强, 佘敏, 杜鸿飞.载硫椰壳活性炭喷射脱汞实验研究[J].工程热物理学报, 2015, 36(5): 1135-1138.

    HONG Ya-guang, DUAN Yu-feng, ZHU Chun, SHE Min, DU Hong-fei. Experimental study on mercury adsorption of S-impregnated coconut shell activated carbon by duct injection[J]. J Eng Thermophys, 2015, 36(5): 1135-1138.
    [6]
    ZHANG L, WANG S, MENG Y, HAO J. Influence of Mercury and Chlorine Content of Coal on Mercury Emissions from Coal-Fired Power Plants in China[J]. Environ Sci Technol, 2012, 46(11): 6385-6392. doi: 10.1021/es300286n
    [7]
    许月阳, 薛建明, 王宏亮, 李兵, 管一明, 刘珺.燃煤烟气常规污染物净化设施协同控汞的研究[J].中国电机工程学报, 2014, 34(23): 3924-3931. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201423013.htm

    XU Yue-yang, XUE Jian-ming, WANG Hong-liang, LI Bing, GUAN Yi-ming, LIU Jun. Research on mercury collaborative control by conventional pollutants purification facilities of coal-fired power plants[J]. Proc Chin Soc Electrical Eng, 2014, 34(23): 3924-3931. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201423013.htm
    [8]
    程乐鸣, 周星龙, 郑成航, 王勤辉, 方梦祥, 施正伦, 骆仲泱, 岑可法.大型循环流化床锅炉的发展[J].动力工程, 2008, 28(6): 817-826. http://cdmd.cnki.com.cn/Article/CDMD-10079-2008073542.htm

    CHENG Le-ming, ZHOU Xing-long, ZHENG Cheng-hang, WANG Qin-hui, FANG Meng-xiang, SHI Zheng-lun, LUO Zhong-yang, CEN Ke-fa. Development of large-scale circulating fluidized bed boiler[J]. J Power Eng, 2008, 28(6): 817-826. http://cdmd.cnki.com.cn/Article/CDMD-10079-2008073542.htm
    [9]
    HU Y, CHENG H. Control of mercury emissions from stationary coal combustion sources in China: Current status and recommendations[J]. Environ Pollut, 2016, 218: 1209-1221. doi: 10.1016/j.envpol.2016.08.077
    [10]
    CHEN B, LI J S, CHEN G Q, WEI W D, YANG Q, YAO M T, SHAO J A, ZHOU M, XIA X H, DONG K Q, XIA H H, CHEN H P. China's energy-related mercury emissions: Characteristics, impact of trade and mitigation policies[J]. J Clean Prod, 2017, 141: 1259-1266. doi: 10.1016/j.jclepro.2016.09.200
    [11]
    YU L, YIN L, XU Q, XIONG Y. Effects of different kinds of coal on the speciation and distribution of mercury in flue gases[J]. J Energy Inst, 2015, 88(2): 136-142. doi: 10.1016/j.joei.2014.06.006
    [12]
    RALLO M, HEIDEL B, BRECHTEL K, MAROTO-VALER M M. Effect of SCR operation variables on mercury speciation[J]. Chem Engineer J, 2012, 198-199: 87-94. doi: 10.1016/j.cej.2012.05.080
    [13]
    EOM Y, JEON S, NGO T, KIM J, LEE T. Heterogeneous mercury reaction on a selective catalytic reduction (SCR) catalyst[J]. Catal Lett, 2008, 121(3/4): 219-225. doi: 10.1007/s10562-007-9317-0
    [14]
    ZHOU Z, LIU X, ZHAO B, CHEN Z, SHAO H, WANG L, XU M. Effects of existing energy saving and air pollution control devices on mercury removal in coal-fired power plants[J]. Fuel Process Technol 2015, 131: 99-108. doi: 10.1016/j.fuproc.2014.11.014
    [15]
    CAO Y, CHENG Q, CHEN C, LIU M, WANG C, PAN W. Abatement of mercury emissions in the coal combustion process equipped with a fabric filter baghouse[J]. Fuel 2008, 87: 3322-3330. doi: 10.1016/j.fuel.2008.05.010
    [16]
    PUDASAINEE D, KIM J, YOON Y, SEO Y. Oxidation, reemission and mass distribution of mercury in bituminous coal-fired power plants with SCR, CS-ESP and wet FGD[J]. Fuel, 2012, 93: 312-318. doi: 10.1016/j.fuel.2011.10.012
    [17]
    ZHANG L, ZHUO Y, CHEN L, XU X, CHEN C. Mercury emissions from six coal-fired power plants in China[J]. Fuel Process Technol, 2008, 89(11): 1033-1040. doi: 10.1016/j.fuproc.2008.04.002
    [18]
    段钰锋, 江贻满, 杨立国, 王运军.循环流化床锅炉汞排放和吸附实验研究[J].中国电机工程学报, 2008, 28(32): 1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200832002.htm

    DUAN Yu-feng, JIANG Yi-man, YANG Li-guo, WANG Yun-jun. Experimental study on mercury emission and adsorption in circulating fluidized bed boiler[J]. Proc Chin Soc Electrical Eng, 2014, 28(32): 1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200832002.htm
    [19]
    CHENG C, CAO Y, ZHANG K, PAN W. Co-effects of sulfur dioxide load and oxidation air on mercury re-emission in forced-oxidation limestone flue gas desulfurization wet scrubber[J]. Fuel, 2013, 116: 505-511. https://www.researchgate.net/publication/256712446_Co-effects_of_sulfur_dioxide_load_and_oxidation_air_on_mercury_re-emission_in_forced-oxidation_limestone_flue_gas_desulfurization_wet_scrubber
    [20]
    YUE C, WANG J, HAN L, CHANG L, HU Y, WANG H. Effects of pretreatment of Pd/AC sorbents on the removal of Hg0 from coal derived fuel gas[J]. Fuel Process Technol, 2015, 135: 125-132. doi: 10.1016/j.fuproc.2014.11.038
    [21]
    RRUPP E C, WILCOX J. Mercury chemistry of brominated activated carbons-Packed-bed breakthrough experiments[J]. Fuel, 2014, 117: 351-353. doi: 10.1016/j.fuel.2013.09.017
    [22]
    CHANG J C S, ZHAO Y. Pilot plant testing of elemental mercury reemission from a wet scrubber[J]. Energy Fuels, 2007, 22(1): 338-342. http://oaspub.epa.gov/eims/eimscomm.getfile?p_download_id=461002
    [23]
    XIN M, GUSTIN M S, LADWIG K. Laboratory study of air-water-coal combustion product (fly ash and FGD solid) mercury exchange[J]. Fuel, 2006, 85(16): 2260-2267. doi: 10.1016/j.fuel.2006.01.029
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (106) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return