Volume 48 Issue 4
Apr.  2020
Turn off MathJax
Article Contents
MENG Yu, LIU Xiao-yan, BAI Miao-miao, WANG Ying, MA Ya-jun, CAO Zhi. First-principles study on the CO adsorption and electronic properties of Fe (111) modified by Cu single atom[J]. Journal of Fuel Chemistry and Technology, 2020, 48(4): 440-447.
Citation: MENG Yu, LIU Xiao-yan, BAI Miao-miao, WANG Ying, MA Ya-jun, CAO Zhi. First-principles study on the CO adsorption and electronic properties of Fe (111) modified by Cu single atom[J]. Journal of Fuel Chemistry and Technology, 2020, 48(4): 440-447.

First-principles study on the CO adsorption and electronic properties of Fe (111) modified by Cu single atom

Funds:

Natural Science Foundation Research Program of Shaanxi province 2019JQ-905

Natural Science Foundation Research Program of Shaanxi province 2018JZ2004

Scientific Research Program Funded by Shaanxi Provincial Education Department 19JS071

Scientific Research Program Funded by Yulin Government 2019-83-1

PhD Research Startup Foundation of Yulin University 17GK12

PhD Research Startup Foundation of Yulin University 17GK13

Foundation of State Key Laboratory of Coal Conversion J20-21-908

More Information
  • Corresponding author: MENG Yu, Tel: 15529967677, E-mail: mengyu@yulinu.edu.cn
  • Received Date: 2020-01-19
  • Rev Recd Date: 2020-04-15
  • Available Online: 2021-01-23
  • Publish Date: 2020-04-10
  • In this paper, the effect of Cu single atom modification on the adsorption of CO and electronic properties of Fe (111) surface has been studied by density functional theory (DFT). Two ways of adsorption and substitution have been studied for Cu mono-atom modification. The results show that the adsorption capacity of CO on the Cu modified Fe (111) becomes weak. One reason is that the sites provided by the Cu atom itself are weak for CO, and the other is that Cu weakens the adsorption of CO on the Fe nearby Cu. The analysis of electronic properties indicates that when Cu acts on the Fe (111), the part electrons of Fe can be transferred to the Cu, which weakens the electronic interaction between Fe and adsorbed molecules, and adjusts its adsorption capacity. Therefore, the Fe surface modified by Cu atom can well adjust the adsorption, dissociation and subsequent reaction catalytic activity of CO, which provides basic information to further explore the syngas catalytic reaction mechanism of Cu modified Fe surface.
  • loading
  • [1]
    ZHANG Q, KANG J, WANG Y. Development of novel catalysts for Fischer-Tropsch synthesis:Tuning the product selectivity[J]. ChemCatChem, 2010, 2:1030-1058. doi: 10.1002/cctc.201000071
    [2]
    王润平, 毛树红, 池永庆, 段秀琴, 刘军.费托合成铁基催化剂助剂的研究概述[J].天津化工, 2008, 22:17-19. http://d.old.wanfangdata.com.cn/Periodical/tjhg200801006

    WANG Run-ping, MAO Shu-hong, CHI Yong-hong, DUAN Xiu-qin, LIU Jun. Overview of the study on FT synthesis of iron-based catalyst auxiliaries[J]. Tianjin Chem Ind, 2008, 22:17-19. http://d.old.wanfangdata.com.cn/Periodical/tjhg200801006
    [3]
    HUO C F, WU B S, GAO P, YANG Y, LI Y W, JIAO H. The mechanism of potassium promoter:Enhancing the stability of active surfaces[J]. Angew Chem Int Ed, 2011, 50:7403-7406. doi: 10.1002/anie.201007484
    [4]
    VAN STEEN E, CLAEYS M. Fischer-Tropsch catalysts for the biomass-to-liquid process[J]. Chem Eng Technol, 2008, 31:655-666. doi: 10.1002/ceat.200800067
    [5]
    CHONCO Z H, FERREIRA A, LODYA L, CLAEYSM, VAN STEEN E. Comparing silver and copper as promoters in Fe-based Fischer-Tropsch catalysts using delafossite as a model compound[J]. J Catal, 2013, 307:283-294. doi: 10.1016/j.jcat.2013.08.005
    [6]
    CHONCO Z H, LODYA L, CLAEYS M, VAN STEEN E. A model for investigating the role of copper in the dynamic iron-based Fischer-Tropsch catalyst[J]. J Catal, 2013, 308:363-373. doi: 10.1016/j.jcat.2013.08.012
    [7]
    O'BRIEN R J, DAVIS B H. Impact of copper on an alkali promoted Iron Fischer-Tropsch catalyst[J]. Catal Lett, 2004, 94:1-6. doi: 10.1023/B:CATL.0000019322.69160.ef
    [8]
    胡伟.合成气制低碳醇Cu-Fe催化剂的制备及改性机制研究[D].上海: 华东理工大学, 2017.

    HU Wei. Preparation Of Cu-Fe Catalysts For Low Carbon Alcohols And Mechanism Research[D]. Shanghai: East China University of Science and Technology, 2017.
    [9]
    李明阳, 李涛.铁改性Cu/Zn/MgO催化剂对合成气制低碳醇的影响[J].精细化工, 2015, 32(6):646-651. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxhg201506010

    LI Ming-yang, LI Tao. Effect of Fe modified Cu/Zn/MgO catalyst on the synthesis of lower alcohol from syngas[J]. Fine Chem, 2015, 32(6):646-651. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxhg201506010
    [10]
    HE S, WANG W, SHEN Z. Carbon nanotube-supported bimetallic Cu-Fe catalysts for syngas conversion to higher alcohols[J]. Mol Catal, 2019, 479:110610. doi: 10.1016/j.mcat.2019.110610
    [11]
    SHI X, YU H, GAO S. Synergistic effect of nitrogen-doped carbon-nanotube-supported Cu-Fe catalyst for the synthesis of higher alcohols from syngas[J]. Fuel, 2017, 210:241-248. doi: 10.1016/j.fuel.2017.08.064
    [12]
    WANG T, TIAN X X, LI Y W, WANG J, BELLER M, JIAO H. Coverage-dependent CO adsorption and dissociation mechanisms on iron surfaces from DFT computations[J]. ACS Catal, 2014, 4(6):1991-2005. doi: 10.1021/cs500287r
    [13]
    WANG T, TIAN X, YANG Y, LI Y, WANG J, BELLER M, JIAO H. Co-adsorption and mutual interaction of nCO+mH2 on the Fe(110) and Fe(111) surfaces[J]. Catal Today, 2015, 261:82-92. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7decc2de97469e87db4578743d442035
    [14]
    LIU S, LI Y, WANG J, JIAO H. Reactions of CO, H2O, CO2, and H2 on the clean and precovered Fe(110) surfaces-A DFT investigation[J]. J Phys Chem C, 2015, 119(51):28377-28388. doi: 10.1021/acs.jpcc.5b07497
    [15]
    CAO D B, WANG S G, LI Y W, WANG J, JIAO H. What is the product of ketene hydrogenation on Fe5C2(001):Oxygenates or hydrocarbons?[J]. J Mol Catal A:Chem, 2007, 272(1/2):275-287.
    [16]
    LING L, WANG Q, ZHANG R. Formation of C2 oxygenates and ethanol from syngas on an Fe-decorated Cu-based catalyst:Insight into the role of Fe as a promoter[J]. Phys Chem Chem Phys, 2017, 19(45):30883-30894. doi: 10.1039/C7CP05411D
    [17]
    TIAN X, WANG T, YANG Y, LI Y W, JIAO H J. Structures and energies of Cu clusters on Fe and Fe3C surfaces from density functional theory computation[J]. Phys Chem Chem Phys, 2014, 16(48):26997-27011. doi: 10.1039/C4CP04012K
    [18]
    赵训华, 李永旺, 王建国, 霍春芳. Fe(100)表面Cu单层膜上CO的吸附解离以及C-C偶合反应[J].燃料化学学报, 2011, 39(12):956-960. doi: 10.3969/j.issn.0253-2409.2011.12.013

    ZHAO Xun-hua, LI Yong-wang, WANG Jian-guo, HUO Chun-fang. CO adsorption, CO dissociation, and CC coupling on Cu monolayer-covered Fe (100)[J]. J Fuel Chem Technol, 2011, 39(12):956-960. doi: 10.3969/j.issn.0253-2409.2011.12.013
    [19]
    KRESSE G, FURTHMVLLER J. Efficiency of Ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput Mater Sci, 1996, 6:15-50. doi: 10.1016/0927-0256(96)00008-0
    [20]
    KRESSE G, FURTHMVLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys Rev B, 1996, 54:11169-11186. doi: 10.1103/PhysRevB.54.11169
    [21]
    BLÖCHL P E. Projector augmented-wave method[J]. Phys Rev B, 1994, 50:17953-17979. doi: 10.1103/PhysRevB.50.17953
    [22]
    KRESSE G, HAFNER J. First-principles study of the adsorption of atomic H on Ni (111), (100) and (110)[J]. Surf Sci, 2000, 459:287-302. doi: 10.1016/S0039-6028(00)00457-X
    [23]
    PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77:3865-3868. doi: 10.1103/PhysRevLett.77.3865
    [24]
    PERDEW J P, BURKEK, ERNZERHOF M. ERRATA:Generalized gradient approximation made simple[J]. Phys Rev Lett, 1997, 78:1396. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_b31ae225ab43d9cfa9076b238ba448e1
    [25]
    METHFESSEL M, PAXTON A T. High-precision sampling for brillouin-zone integration in metals[J]. Phys Rev B, 1989, 40:3616. doi: 10.1103/PhysRevB.40.3616
    [26]
    BLIGAARD T, NØRSKOV J K, DAHL S, MATTHIESEN J, CHRISTENSEN CH, SEHESTED J. The Brønsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis[J]. J Catal, 2004, 224:206-217. doi: 10.1016/j.jcat.2004.02.034
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (179) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return