Volume 48 Issue 2
Feb.  2020
Turn off MathJax
Article Contents
ZHANG Xiu-xia, XIE Miao, WU Hui-xi, LÜ Xiao-xue, LIN Ri-yi, ZHOU Zhi-jun. Microscopic effect mechanism of Ca on NO heterogeneous reduction by char: A DFT study[J]. Journal of Fuel Chemistry and Technology, 2020, 48(2): 163-171.
Citation: ZHANG Xiu-xia, XIE Miao, WU Hui-xi, LÜ Xiao-xue, LIN Ri-yi, ZHOU Zhi-jun. Microscopic effect mechanism of Ca on NO heterogeneous reduction by char: A DFT study[J]. Journal of Fuel Chemistry and Technology, 2020, 48(2): 163-171.

Microscopic effect mechanism of Ca on NO heterogeneous reduction by char: A DFT study

Funds:

The project was supported by the Fundamental Research Funds for the Central Universities 18CX02073A

National Natural Science Foundation of China 51874333

More Information
  • Corresponding author: ZHANG Xiu-xia, E-mail: zhangxx@upc.edu.cn
  • Received Date: 2019-11-22
  • Rev Recd Date: 2020-01-14
  • Available Online: 2021-01-23
  • Publish Date: 2020-02-10
  • The effect mechanism of Ca on nitric oxide (NO) heterogeneous reduction by char was investigated using density functional theory (DFT). The electronic structure of char model was analyzed to predict reactive sites. Mayer bond orders were used to quantify formation and breaking of chemical bonds in the reactions. There is a region with high electron localization function values in the extended outer region of unsaturated carbon atoms at the edge. The minimum electrostatic potential of char model, -101.1 kJ/mol, also exists at the edge, indicating the presence of lone pair electrons on edge carbon atoms. The doping of Ca could promote adsorption of the first NO molecule, but has little effect on that of the second NO molecule. The activation energy of rate-determining step is 124.4 kJ/mol for heterogeneous reduction of NO at the edge of char, whereas it is 91.9 kJ/mol at the Ca-decorated char edge. The kinetic analysis shows that the anterior factor increases after doping of Ca, meaning more sites are activated. The promotion of Ca to NO heterogeneous reduction is attributed to combination of the above two aspects.
  • loading
  • [1]
    岑可法, 倪明江, 高翔, 骆仲泱, 王智化, 郑成航.煤炭清洁发电技术进展与前景[J].中国工程科学, 2015, 17(9):49-55. doi: 10.3969/j.issn.1009-1742.2015.09.009

    CEN Ke-fa, NI Ming-jiang, GAO Xiang, LUO Zhong-yang, WANG Zhi-hua, ZHENG Cheng-hang. Progress and prospects on clean coal technology for power generation[J]. Eng Sci, 2015, 17(9):49-55. doi: 10.3969/j.issn.1009-1742.2015.09.009
    [2]
    ULUSOY B, WU H, LIN W G, KARLSTRÖM O, LI S G, SONG W L, GLARBORG P, DAM-JOHANSEN K. Reactivity of sewage sludge, RDF, and straw chars towards NO[J]. Fuel, 2019, 236:297-305. doi: 10.1016/j.fuel.2018.08.164
    [3]
    SHU Y, WANG H, ZHU J, TIAN G, HUANG J, ZHANG F. An experimental study of heterogeneous NO reduction by biomass reburning[J]. Fuel Process Technol, 2015, 132:111-117. doi: 10.1016/j.fuproc.2014.12.039
    [4]
    LU P, HAO J T, YU W, ZHU X M, DAI X. Effects of water vapor and Na/K additives on NO reduction through advanced biomass reburning[J]. Fuel, 2016, 170:60-66. doi: 10.1016/j.fuel.2015.12.037
    [5]
    周昊, 刘瑞鹏, 刘子豪, 程明, 岑可法.碱金属对焦炭燃烧过程中NOx释放的影响[J].煤炭学报, 2015, 40(5):1160-1164. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtxb201505028

    ZHOU Hao, LIU Rui-peng, LIU Zi-hao, CHENG Ming, CEN Ke-fa. Influence of alkali metal on the evolution of NOx during coke combustion[J]. J China Coal Soc, 2015, 40(5):1160-1164. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtxb201505028
    [6]
    WU X Y, SONG Q, ZHAO H B, YAO Q. Catalytic mechanism of inherent potassium on the char-NO reaction[J]. Energy Fuels, 2015, 29(11):7566-7571. doi: 10.1021/acs.energyfuels.5b01550
    [7]
    钟北京, 施卫伟, 傅维标.焦炭再燃过程中催化剂对NO还原的影响[J].热能动力工程, 2001, 16(5):259-274.

    ZHONG Bei-jing, SHI Wei-wei, FU Wei-biao. Effect of catalyst on NO reduction during reburning of coal char[J]. J Eng Therm Energy Power, 2001, 16(5):259-274.
    [8]
    徐力, 韦振祖, 高建民, 王剑, 赵伟, 程健, 杜谦, 赵广播, 吴少华.制焦条件和催化剂对大颗粒焦炭还原NO影响[J].哈尔滨工业大学学报, 2016, 48(7):53-57.

    XU Li, WEI Zhen-zu, GAO Jian-min, WANG Jian, ZHAO Wei, CHENG Jian, DU Qian, ZHAO Guang-bo, WU Shao-hua. Effect of charring condition and catalyst on NO reduction by large char particles[J]. J Harbin Inst Technol, 2016, 48(7):53-57.
    [9]
    吕俊复, 柯希玮, 蔡润夏, 张缦, 吴玉新, 杨海瑞, 张海.循环流化床燃烧条件下焦炭表面NOx还原机理研究进展[J].煤炭转化, 2018, 41(1):1-12. (LÜ doi: 10.3969/j.issn.1004-4248.2018.01.001

    Lü Jun-fu, KE Xi-wei, CAI Run-xia, ZHANG Man, WU YU-xin, YANG Hai-rui, ZHANG Hai. Research progress on the kinetics of NOx reduction over chars in fluidized bed combustion[J]. Coal Convers, 2018, 41(1):1-12. doi: 10.3969/j.issn.1004-4248.2018.01.001
    [10]
    ZHAO Z B, QIU J S, LI W, CHEN H K, LI B Q. Influence of mineral matter in coal on decomposition of NO over coal chars and emission of NO during char combustion[J]. Fuel, 2003, 82(8):949-957. doi: 10.1016/S0016-2361(02)00394-0
    [11]
    信晶, 尹书剑, 孙保民, 朱恒毅, 罗肖, 黄强, 肖海平.掺杂金属化合物强化焦炭-NO反应的析因试验研究[J].煤炭学报, 2015, 40(5):1174-1180.

    XIN Jin, YIN Shu-jian, SUN Bao-min, ZHU Heng-yi, LUO Xiao, HUANG Qiang, XIAO Hai-ping. Factorial experimental study of analysis of the char-NO reaction intensified by doped metallic compounds[J]. J China Coal Soc, 2015, 40(5):1174-1180.
    [12]
    LIU L, JIN J, LIN Y Y, HOU F X, LI S J. The effect of calcium on nitric oxide heterogeneous adsorption on carbon:A first-principles study[J]. Energy, 2016, 106:212-220. doi: 10.1016/j.energy.2016.02.148
    [13]
    温正城, 王智化, 周俊虎, 周志军, 刘建忠, 岑可法.金属钙对煤焦异相还原NO催化机理的量子化学研究[J].燃烧科学与技术, 2009, 15(6):505-510. doi: 10.3321/j.issn:1006-8740.2009.06.005

    WEN Zheng-cheng, WANG Zhi-hua, ZHOU Jun-hu, ZHOU Zhi-jun, LIU Jian-zhong, CEN Ke-fa. Quantum chemistry study on catalytic mechanism of Ca on NO-char heterogeneous reaction[J]. J Combust Sci Technol, 2009, 15(6):505-510. doi: 10.3321/j.issn:1006-8740.2009.06.005
    [14]
    陈萍, 顾明言, 汪嘉伦, 卢坤, 林郁郁.含氮煤焦还原NO反应路径研究[J].燃料化学学报, 2019, 47(3):279-286. http://d.old.wanfangdata.com.cn/Periodical/rlhxxb201903004

    CHEN Ping, GU Ming-yan, WANG Jia-lun, LU Kun, LIN Yu-yu. Reaction pathways for the reduction of NO by nitrogen-containing char[J]. J Fuel Chem Technol, 2019, 47(3):279-286. http://d.old.wanfangdata.com.cn/Periodical/rlhxxb201903004
    [15]
    张秀霞, 周志军, 周俊虎, 刘建忠, 岑可法.煤粉再燃中煤焦异相还原NO机理的量化研究[J].燃烧科学与技术, 2011, 17(2):155-159. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rskxyjs201102010

    ZHANG Xiu-xia, ZHOU Zhi-jun, ZHOU Jun-hu, LIU Jian-zhong, CEN Ke-fa. A quantum chemistry study of heterogeneous reduction mechanism of NO on the surface of char during pulverized coal reburning[J]. J Combust Sci Technol, 2011, 17(2):155-159. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rskxyjs201102010
    [16]
    GAO Z Y, YANG W J, DING X L, DING Y, YAN W P. Theoretical research on heterogeneous reduction of N2O by char[J]. Appl Therm Eng, 2017, 126:28-36. doi: 10.1016/j.applthermaleng.2017.07.166
    [17]
    ZHANG H, JIANG X M, LIU J X, LIU J G. Theoretical study on the reactions originating from solid char(N):Radical preference and possible surface N2 formation reactions[J]. Ind Eng Chem Res, 2019, 58:18021-18026. doi: 10.1021/acs.iecr.9b02999
    [18]
    ZHAO T, SONG W L, FAN C G, LI S, GLARBORG P, YAO X. Density functional theory study of the role of a carbon-oxygen single bond group in the NO-Char reaction[J]. Energy Fuels, 2018, 32(7):7734-7744. doi: 10.1021/acs.energyfuels.8b01124
    [19]
    MERRICK J P, MORAN D, RADOM L. An evaluation of harmonic vibrational frequency scale factors[J]. J Phys Chem A, 2007, 111:11683-11700. doi: 10.1021/jp073974n
    [20]
    FRISCH M L, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09[CP]. Revision D.01; Gaussian, Inc., Wallingford CT, 2009.
    [21]
    冯炜, 高红凤, 王贵, 吴浪浪, 许靖钦, 李壮楣, 李平, 白红存, 郭庆杰.枣泉煤分子模型构建及热解的分子模拟[J].化工学报, 2019, 70(4):1522-1531. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxb201904034

    FENG Wei, GAO Hong-feng, WANG Gui, WU Lang-lang, XU Jing-qin, LI Zhuang-mei, LI Ping, BAI Hong-cun, GUO Qing-jie. Molecular model and pyrolysis simulation of Zaoquan coal[J]. CIESC J, 2019, 70(4):1522-1531. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxb201904034
    [22]
    QIU Y, ZHONG W, SHAO Y, YU A. Reactive force field molecular dynamics (ReaxFF MD) simulation of coal oxy-fuel combustion[J]. Powder Technol, 2020, 361:337-348. doi: 10.1016/j.powtec.2019.07.103
    [23]
    XU F, LIU H, WANG Q, PAN S, ZHAO D, LIU Y. Study of non-isothermal pyrolysis mechanism of lignite using ReaxFF molecular dynamics simulations[J]. Fuel, 2019, 256:115884. doi: 10.1016/j.fuel.2019.115884
    [24]
    ZHENG M, LI X X, WANG M J, GUO L. Dynamic profiles of tar products during naomaohu coal pyrolysis revealed by large-scale reactive molecular dynamic simulation[J]. Fuel, 2019, 253:910-920. doi: 10.1016/j.fuel.2019.05.085
    [25]
    CHEN N, YANG R T. Ab initio molecular orbital calculation on graphite:Selection of molecular system and model chemistry[J]. Carbon, 1998, 36:1061-1070. doi: 10.1016/S0008-6223(98)00078-5
    [26]
    SANDER M, RAJ A, INDERWILDI O, KRAFT M, KURETI S, BOCKHORN H. The simultaneous reduction of nitric oxide and soot in emissions from diesel engines[J]. Carbon, 2009, 47:866-875. doi: 10.1016/j.carbon.2008.11.043
    [27]
    OYARZÚN A M, RADOVIC L R, KYOTANI T. An update on the mechanism of the graphene-NO reaction[J]. Carbon, 2015, 86:58-68. doi: 10.1016/j.carbon.2015.01.020
    [28]
    KYOTANI T, TOMITA A. Analysis of the reaction of carbon with NO/N2O using ab initio molecular orbital theory[J]. J Phys Chem B, 1999, 103(17):3434-3441. doi: 10.1021/jp9845928
    [29]
    卢天, 陈飞武.电子定域化函数的含义与函数形式[J].物理化学学报, 2011, 27(12):2786-2792. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201112009

    LU Tian, CHEN Fei-wu. Meaning and functional form of the electron localization function[J]. Acta Phys-Chem Sin, 2011, 27(2):2786-2792. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201112009
    [30]
    LU T, CHEN F W. Multiwfn:A multifunctional wavefunction analyzer[J]. J Comput Chem, 2012, 33:580-592. doi: 10.1002/jcc.22885
    [31]
    BECKE A D, EDGECOMBE K E. A simple measure of electron localization in atomic and molecular systems[J]. J Chem Phys, 1990, 92(9):5397-5403. doi: 10.1063/1.458517
    [32]
    张秀霞.焦炭燃烧过程中氮转化机理与低NOx燃烧技术的开发[D].杭州: 浙江大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10335-1012488726.htm

    ZHANG Xiu-xia. Nitrogen conversion mechanism during char combustion and develepment of low NOx technology[D]. Hangzhou: Zhejiang University, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10335-1012488726.htm
    [33]
    ZHOU Z J, ZHANG X X, ZHOU J H, LIU J Z, CEN K F. A Molecular modeling study of N2 desorption from NO heterogeneous reduction on char[J]. Energy Sources, Part A, 2014, 36(2):158-116. doi: 10.1080/15567036.2010.506477
    [34]
    信晶, 孙保民, 朱恒毅, 尹书剑, 张振星, 钟亚峰.焦炭边缘模型异相还原NO的Mayer键级变化分析[J].煤炭学报, 2014, 39(4):771-775. http://www.cnki.com.cn/Article/CJFDTotal-MTXB201404031.htm

    XIN Jing, SUN Bao-min, ZHU Heng-yi, YIN Shu-jian, ZHANG Zhen-xing, ZHONG Ya-feng. Variation analysis of Mayer bond order during the heterogeneous reduction reaction between NO and char edge models[J]. J China Coal Soc, 2014, 39(4):771-775. http://www.cnki.com.cn/Article/CJFDTotal-MTXB201404031.htm
    [35]
    ZHAO D, LIU H, SUN C L, XU L F, CAO Q X. DFT study of the catalytic effect of Na on the gasification of carbon-CO2[J]. Combust Flame, 2018, 197:471-486. doi: 10.1016/j.combustflame.2018.09.002
    [36]
    MA X C, LI L Q, CHEN R F, WANG C Z, ZHOU K, LI H L. Doping of alkali metals in carbon frameworks for enhancing CO2 capture:A theoretical study[J]. Fuel, 2019, 236:942-948. doi: 10.1016/j.fuel.2018.08.166
    [37]
    SHEN F H, LIU J, WU D W, DONG Y C, ZHANG Z. Development of O2 and NO Co-doped porous carbon as a high-capacity mercury sorbent[J]. Environ Sci Technol, 2019, 53:1725-1731. doi: 10.1021/acs.est.8b05777
    [38]
    LIU J, ZHANG X, LU Q, SHAW A, HU B, JIANG X, DONG C. Mechanism study on the effect of alkali metal ions on the formation of HCN as NOx precursor during coal pyrolysis[J]. J Energy Inst, 2019, 92(3):604-612. https://www.researchgate.net/publication/269357602_Effects_of_Alkali_and_Alkaline_Earth_Metals_on_NOx_Reduction_in_Coke_Combustion
    [39]
    邹潺, 王春波, 邢佳颖.煤燃烧过程中砷与氮氧化物的反应机理[J].燃料化学学报, 2019, 47(2):138-143. doi: 10.3969/j.issn.0253-2409.2019.02.002

    ZOU Chan, WANG Chun-bo, XING Jia-ying. Reaction mechanism of arsenic and nitrous oxides during coal combustion[J]. J Fuel Chem Technol, 2019, 47(2):138-143. doi: 10.3969/j.issn.0253-2409.2019.02.002
    [40]
    BEHESHTI E, NOJEH A, SERVATI P. A first-principles study of calcium-decorated, boron-doped graphene for high capacity hydrogen storage[J]. Carbon, 2011, 49(5):1561-1567. doi: 10.1016/j.carbon.2010.12.023
    [41]
    GARRETT B C, TRUHLAR D G. Accuracy of tunneling corrections to transition state theory for thermal rate constants of atom transfer reactions[J]. J Phys Chem, 1979, 83(1):200-203. doi: 10.1021/j100464a026
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (206) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return