Volume 48 Issue 10
Oct.  2020
Turn off MathJax
Article Contents
CAO Yue, CHEN Chuan-min, LIU Song-tao, JIA Wen-bo. Study on the Hg0 and NH3 oxidation performance of copper modified attapulgite catalysts[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1171-1178.
Citation: CAO Yue, CHEN Chuan-min, LIU Song-tao, JIA Wen-bo. Study on the Hg0 and NH3 oxidation performance of copper modified attapulgite catalysts[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1171-1178.

Study on the Hg0 and NH3 oxidation performance of copper modified attapulgite catalysts

Funds:

the National Natural Science Foundation of China 51976060

The Fundamental Research Funds for the Central Universities 2018MS118

More Information
  • Corresponding author: CHEN Chuan-min,E-mail:hdccm@126.com; LIU Song-tao,E-mail:taonyliu@163.com
  • Received Date: 2020-09-10
  • Rev Recd Date: 2020-09-28
  • Available Online: 2021-01-23
  • Publish Date: 2020-10-10
  • A copper-modified attapulgite (Cu3-ATP) catalyst with both mercury oxidation and ammonia oxidation activities was prepared by an improved wet impregnation method. Several characterization including SEM, H2-TPR and NH3-TPD were performed on it, and its mercury oxidation and ammonia oxidation performance were tested at 150-400 ℃. The results show that the copper species is successfully loaded on ATP surface, which significantly improves the redox ability of the catalyst, increases the strong acid sites and partial strong acid sites on the surface, and thus promotes the oxidation of Hg0 and NH3. HCl plays an important role in Hg0 oxidation. High temperature is not conducive to the Hg0 oxidation reaction, but can promote the oxidation of NH3. At 350 ℃, the oxidation efficiencies of Hg0 and NH3 over Cu3-ATP are both above 90%. Experiments on the influencing factors show that NH3 has an obvious inhibitory effect on mercury oxidation at high space velocity, while low concentrations of Hg0 and HCl have no significant influence on ammonia oxidation. When the gas hourly space velocity (GHSV) is lower than 5×104 h-1, Cu3-ATP can simultaneously oxidize NH3 and Hg0. In addition, the mercury oxidation reaction shows good sulfur resistance and water resistance, but SO2 has a certain inhibitory effect on ammonia oxidation.
  • loading
  • [1]
    GOLDING G R, KELLY C A, SPARLING R, LOEWEN P C, BARKAY T. Evaluation of mercury toxicity as a predictor of mercury bioavailability[J]. Environ Sci Technol, 2007, 41(16):5685-5692. doi: 10.1021/es070138i
    [2]
    PACYNA E G, PACYNA J M, SUNDSETH K, MUNTHE J, KINDBOM K, WILSON S, STEENHUISEN F, MAXSON P. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020[J]. Atmos Environ, 2010, 44(20):2487-2499. doi: 10.1016/j.atmosenv.2009.06.009
    [3]
    LIU Y, ADEWUYI Y G. A review on removal of elemental mercury from flue gas using advanced oxidation process:Chemistry and process[J]. Chem Eng Res Des, 2016, 112:199-250. doi: 10.1016/j.cherd.2016.06.024
    [4]
    李建荣, 何炽, 商雪松, 陈进生, 喻小伟, 姚沅君. SCR脱硝催化剂对烟气中零价汞的氧化效率研究[J].燃料化学学报, 2012, 40(2):241-246. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201202018

    LI Jian-rong, HE Chi, SHANG Xue-song, CHEN Jin-sheng, YU Xiao-wei, YAO Yuan-jun. Oxidation efficiency of elemental mercury in flue gas by SCR De-NOx catalysts[J]. J Fuel Chem Technol, 2012, 40(2):241-246. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201202018
    [5]
    EOM Y, JEON S H, NGO T A, KIM J, LEE T G. Heterogeneous mercury reaction on a selective catalytic reduction (SCR) catalyst[J]. Catal Lett, 2008, 121(3):219-225. doi: 10.1007/s10562-007-9317-0
    [6]
    KAMATA H, UENO S, NAITO T, YUKIMURA A. Mercury oxidation over the V2O5(WO3)/TiO2 commercial SCR catalyst[J]. Ind Eng Chem Res, 2015, 47(21):8136-8141. doi: 10.1021/ie800363g
    [7]
    DRANGA B, LAZAR L, KOESER H. Oxidation catalysts for elemental mercury in flue gases-A review[J]. Catalysts, 2012, 2(4):139-170. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=catalysts-02-00139
    [8]
    WANG Y, CHANG H, SHI C, DUAN L, LI J, ZHANG G, GUO L, YOU Y. Novel Fe-Ce-O mixed metal oxides catalyst prepared by hydrothermal method for Hg0 oxidation in the presence of NH3[J]. Catal Commun, 2017, 100:210-213. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ced6c8d15f7a156d4bc9433a2548a7f3
    [9]
    LI H, ZHANG W, WANG J, YANG Z, LI L, SHIH K. Coexistence of enhanced Hg0 oxidation and induced Hg2+ reduction on CuO/TiO2 catalyst in the presence of NO and NH3[J]. Chem Eng J, 2017, 330:1248-1254. doi: 10.1016/j.cej.2017.08.043
    [10]
    WU W, ZENG Z, LU P, XING Y, YUE H, LI R. Simultaneous oxidation of Hg0 and NH3-SCR of NO by nanophase CexZryMnzO2 at low temperature:the interaction and mechanism[J]. Environ Sci Pollut R, 2018, 25:14471-14485. doi: 10.1007/s11356-018-1657-3
    [11]
    ZHAO B, YI H, TANG X, LI Q, LIU D, GAO F. Using CuO-MnOx/AC-H as catalyst for simultaneous removal of Hg0 and NO from coal-fired flue gas[J]. J Hazard Mater, 2019, 364:700-709. doi: 10.1016/j.jhazmat.2018.04.001
    [12]
    LI H, WU C, LI Y, ZHANG J. Superior activity of MnOx-CeO2/TiO2 catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures[J]. Appl Catal B:Environ, 2012, 111-112:381-388. http://www.sciencedirect.com/science/article/pii/S0926337311004917
    [13]
    ZHANG S, ZHANG Q, ZHAO Y, YANG J, XU Y, ZHANG J. Enhancement of CeO2 modified commercial SCR catalyst for synergistic mercury removal from coal combustion flue gas[J]. RSC Adv, 2020, 10:25325-25338. doi: 10.1039/D0RA04350H
    [14]
    ZHANG S, ZHAO Y, YANG J, ZHANG Y, SUN P, YU X, ZHANG J, ZHENG C. Simultaneous NO and mercury removal over MnOx/TiO2 catalyst in different atmospheres[J]. Fuel Process Technol, 2017, 166:282-290. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1b0b81e91ef50fd688cf16bb5056c31a
    [15]
    XU H, QU Z, ZONG C, QUAN F, MEI J, YAN N. Catalytic oxidation and adsorption of Hg0 over low-temperature NH3-SCR LaMnO3 perovskite oxide from flue gas[J]. Appl Catal B:Environ, 2016, 186:30-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ffe3b47cb7a5ca7d6e5b65bffcb3e67f
    [16]
    CHEN W, MA Y, YAN N, QU Z, YANG S, XIE J, GUO Y, HU L, JIA J. The co-benefit of elemental mercury oxidation and slip ammonia abatement with SCR-Plus catalysts[J]. Fuel, 2014, 133:263-269. doi: 10.1016/j.fuel.2014.04.086
    [17]
    时博文.凹凸棒石负载过渡金属氧化物低温SCR脱硝催化剂的制备与表征[D].合肥: 合肥工业大学, 2012.

    SHI Bo-wen. Preparation and characterization of palygorskite supported transition metal oxides catalyst for low-temperature selected catalytic reduction(SCR) of NO by NH3[D]. Hefei: Hefei University of Technology, 2012.
    [18]
    陈浩, 黄亚继, 董璐, 曹健华, 夏志鹏, 秦文慧.磁性凹凸棒土制备及其脱汞性能研究[J].燃料化学学报, 2018, 46(11):1392-1400. http://www.ccspublishing.org.cn/article/id/ed623d04-dea8-4aeb-8418-b5210ab0b833

    CHEN Hao, HUANG Ya-ji, DONG Lu, CAO Jian-hua, XIA Zhi-peng, QIN Wen-hui. Study on the preparation of magnetic attapulgite and its mercury removal performance[J]. J Fuel Chem Technol, 2018, 46(11):1392-1400. http://www.ccspublishing.org.cn/article/id/ed623d04-dea8-4aeb-8418-b5210ab0b833
    [19]
    CHEN T, LIU H, LI J, CHEN D, CHANG D, KONG D, FROST R. Effect of thermal treatment on adsorption-desorption of ammonia and sulfur dioxide on palygorskite:Change of surface acid-alkali properties[J]. Chem Eng J, 2011, 166(3):1017-1021. http://www.sciencedirect.com/science/article/pii/S1385894710011903
    [20]
    韩粉女.凹凸棒土为载体的SCR催化剂的制备及其脱硝脱汞性能研究[D].南京: 南京理工大学, 2019.

    HAN Fen-nv. Preparation of SCR catalyst supported on attapulgite and its performance of denitrification and mercury removal[D]. Nanjing: Nanjing University of Science Technology 2019.
    [21]
    陆玉, 吴飞, 张秋香, 马海波, 陆洪彬, 许琦.熔盐法制备Fe2O3-ATP及零价汞催化氧化性能研究[J].应用化工, 2017, 46(3):405-408. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sxhg201703001

    LU Yu, WU Fei, ZHANG Qiu-xiang, MA Hai-bo, LU Hong-bin, XU Qi. Molten salt synthesis of Fe2O3-ATP for catalytic oxidation of elemental mercury[J]. Appl Chem Ind, 2017, 46(3):405-408. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sxhg201703001
    [22]
    SHI D, LU Y, TANG Z, HAN F, CHEN R, XU Q. Removal of elemental mercury from simulated flue gas by cerium oxide modified attapulgite[J]. Korean J Chem Eng, 2014, 31(8):1405-1412. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=257154967edae84e4c707926838d0251
    [23]
    CHEN C, CAO Y, LIU S, JIA W. The catalytic properties of Cu modified attapulgite in NH3-SCO and NH3-SCR reactions[J]. Appl Surf Sci, 2019, 480:537-547. http://www.sciencedirect.com/science/article/pii/S0169433219306361
    [24]
    RUTKOWSKA M, PIWOWARSKA Z, MICEK E, CHMIELARZ L. Hierarchical Fe-, Cu- and Co-Beta zeolites obtained by mesotemplate-free method. Part Ⅰ:Synthesis and catalytic activity in N2O decomposition[J]. Microporous Mesoporous Mater, 2015, 209:54-65. doi: 10.1016/j.micromeso.2014.10.011
    [25]
    LI Y, DENG J, SONG W, LIU J, ZHAO Z, GAO M, WEI Y, ZHAO L. Nature of Cu species in Cu-SAPO-18 catalyst for NH3-SCR:Combination of experiments and DFT calculations[J]. J Phys Chem C, 2016, 120(27):14669-14680. doi: 10.1021/acs.jpcc.6b03464
    [26]
    WANG J, YU T, WANG X, QI G, XUE J, SHEN M, LI W. The influence of silicon on the catalytic properties of Cu/SAPO-34 for NOx reduction by ammonia-SCR[J]. Appl Catal B:Environ, 2012, 127:137-147. doi: 10.1016/j.apcatb.2012.08.016
    [27]
    VALYON J, HALL W K. Effects of reduction and reoxidation on the infrared spectra from Cu-Y and Cu-ZSM-5 zeolites[J]. J Phys Chem, 1993, 97(27):7054-7060. doi: 10.1021/j100129a021
    [28]
    SULTANA A, NANBA T, HANEDA M, SASAKI M, HAMADA H. Influence of co-cations on the formation of Cu+ species in Cu/ZSM-5 and its effect on selective catalytic reduction of NOx with NH3[J]. Appl Catal B:Environ, 2010, 101(1):61-67. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ca17369f2dded7d2468999196bbbbe35
    [29]
    RICHTER M, FAIT M J G, ECKELT R, SCHREIER E, SCHNEIDER M, POHL M M, FRICKE R. Oxidative gas phase carbonylation of methanol to dimethyl carbonate over chloride-free Cu-impregnated zeolite Y catalysts at elevated pressure[J]. Appl Catal B:Environ, 2007, 73(3):269-281. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=60778da8b53fcfbbfc71cf0784937fdd
    [30]
    YAMAGUCHI A, AKIHO H, ITO S. Mercury oxidation by copper oxides in combustion flue gases[J]. Powder Technology, 2008, 180(1/2):222-226. http://www.sciencedirect.com/science/article/pii/S0032591007001416
    [31]
    LI H, WU S, WU C, WANG J, LI L, SHIH K. SCR atmosphere induced reduction of oxidized mercury over CuO-CeO2/TiO2 catalyst[J]. Environ Sci Technol, 2015, 49(12):7373-7379. doi: 10.1021/acs.est.5b01104
    [32]
    CHEN C, CAO Y, LIU S, JIA W. The effect of SO2 on NH3-SCO and SCR properties over Cu/SCR catalyst[J]. Appl Surf Sci. 2020, 507:145153. http://www.researchgate.net/publication/338138673_The_effect_of_SO2_on_NH3-SCO_and_SCR_properties_over_CuSCR_catalyst
    [33]
    JABŁOHSKA M, PALKOVITS R. Copper based catalysts for the selective ammonia oxidation into nitrogen and water vapour-Recent trends and open challenges[J]. Appl Cataly B:Environ, 2016, 181:332-351. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ef6b75c6f606c34621eb653b121d434a
    [34]
    HE S, ZHANG C, YANG M, ZHANG Y, XU W, CAO N, HE H. Selective catalytic oxidation of ammonia from MAP decomposition[J]. Sep Purif Technol, 2007, 58(1):173-178. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=df960f409c763455370c3d017549ef9e
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (664) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return