Volume 45 Issue 9
Sep.  2017
Turn off MathJax
Article Contents
JIN Zhi-xin, WU Si-yuan, DENG Cun-bao, DAI Feng-wei, WANG Xue-feng. Theoretical calculation of water effect on power plant flue gas adsorption by goaf coal[J]. Journal of Fuel Chemistry and Technology, 2017, 45(9): 1035-1042.
Citation: JIN Zhi-xin, WU Si-yuan, DENG Cun-bao, DAI Feng-wei, WANG Xue-feng. Theoretical calculation of water effect on power plant flue gas adsorption by goaf coal[J]. Journal of Fuel Chemistry and Technology, 2017, 45(9): 1035-1042.

Theoretical calculation of water effect on power plant flue gas adsorption by goaf coal

Funds:

National Natural Science Foundation of China 51174108

More Information
  • Corresponding author: WU Si-yuan, Tel:18841849787, Fax:0418-3371702, E-mail:wusiyuanluanx@126.com
  • Received Date: 2017-04-24
  • Rev Recd Date: 2017-06-26
  • Available Online: 2021-01-23
  • Publish Date: 2017-09-10
  • To investigate the effect of water content in flue gas and moisture in coal on the greenhouse gas CO2 storage and coal spontaneous combustion when injecting power plant flue gas into goaf, the dry and wet coal structural models were established. The adsorption behavior of flue gas mixtures of CO2/O2/N2/H2O with different water contents by dry coal and wet coal with various moisture contents was simulated using Grand Canonical Monte Carlo method. The result shows that the competitive adsorption ability and capacity of CO2 in flue gas are the strongest, while the physical adsorption amount of O2 is the least. The H2O content in flue gas has little effect on the adsorption amount of CO2, N2 and O2. So the power plant flue gas can be directly injected into the goaf without drying. As the water content in the coal increases, the pore space is occupied by water, the Van der Waals force decreases, and the hydrogen bonding between H2O-H2O increases to provide additional adsorption sites. However, because the isosteric heat of H2O increases and the adsorption sites move toward a lower interaction region where the adsorption is stronger, a large amounts of water is adsorbed to form water clusters and compete the adsorption sites and space with CO2, O2, N2, leading to a decrease in gas adsorption amount by more than 50%. Therefore, the water content in goaf coal should be fully taken into account when the flue gas is injected.
  • loading
  • [1]
    METZ B. IPCC Special Report on Carbon dioxide Capture and Storage[M]. UK:Cambridge University, 2005.
    [2]
    OTTIGER S, PINI R, STORTI G, MAZZOTTI M. Measuring and modeling the competitive adsorption of CO2, CH4, and N2 on a dry coal[J]. Langmuir, 2008, 24(17):9531-9540. doi: 10.1021/la801350h
    [3]
    SYED A, DURUCAN S, SHI J Q, KORRE A. Flue Gas Injection for CO2 Storage and Enhanced Coalbed Methane Recovery:Mixed Gas Sorption and Swelling Characteristics of Coals[J]. Energy Procedia, 2013, 37(2):6738-6745. http://www.sciencedirect.com/science/article/pii/S1876610213008503
    [4]
    LAW H S, MEER L G H V D, GUNTER W D. Comparison of Numerical Simulators for Greenhouse Gas Storage in Coal Beds, Part Ⅱ:Flue Gas Injection[C]. Greenh Gas Con Techno-6th Int Conference, 2003:563-568.
    [5]
    XU D, ZHANG J, LI G, XIAO P, WEBLEY P, ZHAI Y C. Effect of water vapor from power station flue gas on CO2 capture by vacuum swing adsorption with activated carbon[J]. J Fuel Chem Technol, 2011, 39(3):169-174. doi: 10.1016/S1872-5813(11)60016-9
    [6]
    尚帅超. 电厂烟气预防自燃与封存的可行性研究[D]. 阜新: 辽宁工程技术大学, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10147-1011024632.htm

    SHANG Shuai-chao. Feasibility study of the power plant haze been to prevent spontaneous combustion and sealed[D]. Fuxin:Liaoning Technical University, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10147-1011024632.htm
    [7]
    贾宝山, 尹彬, 张卫亮, 韩光.烟道气预防采空区自燃的数值模拟及参数确定[J].采矿与安全工程学报, 2015, 32(6):1043-1048. http://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201506029.htm

    JIA Bao-shan, YIN Bin, ZHANG Wei-liang, HAN Guang. Numerical simulation and parameter determination in goaf spontaneous combustion prevention by injecting flue gas[J]. J Min Saf Eng, 2015, 32(6):1043-1048. http://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201506029.htm
    [8]
    贾宝山, 尹彬, 闫玉岗, 等. 煤矿坑口电厂烟道气用于采空区防灭火技术研究[J]. 中国安全生产科学技术, 2014, 10(7): 49-54. http://d.wanfangdata.com.cn/Periodical/zgzyaqwsgltxrz201407011

    JIA Bao-shan, YIN Bin, YAN Yu-gang, HAN Guang. Research on technology of applying the flue gas of pithead power plant to fire prevention and extinguishing in goaf[J]. J Saf Sci Technol, 2014, 10(7):49-54. http://d.wanfangdata.com.cn/Periodical/zgzyaqwsgltxrz201407011
    [9]
    高飞, 邓存宝, 王雪峰, 武司苑.烟气注入采空区封存的可行性与安全性分析[J].中国安全生产科学技术, 2016, 12(5):1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201607014.htm

    GAO Fei, DENG Cun-bao, WANG Xue-feng, WU Si-yuan. Analysis on feasibility and safety in sealing of smoke injected into goaf[J]. J Saf Sci Technol, 2016, 12(5):1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201607014.htm
    [10]
    高飞, 邓存宝, 王雪峰, 武司苑.常温常压下采空区遗煤对电厂烟气的吸附[J].环境工程学报, 2016, 10(4):1907-1912. doi: 10.12030/j.cjee.20160452

    GAO Fei, DENG Cun-bao, WANG Xue-feng, WU Si-yuan. Adsorption of power plant flue gas by abandoned coal at normal temperature and pressure[J]. Chin J Environ Eng, 2016, 10(4):1907-1912. doi: 10.12030/j.cjee.20160452
    [11]
    AHN H, LEE C H. Effects of capillary condensation on adsorption and thermal desorption dynamics of water in zeolite 13X and layered beds[J]. Chem Eng Sci, 2004, 59(13):2727-2743. doi: 10.1016/j.ces.2004.04.011
    [12]
    PAN Z, CONNELL L D, CAMILLERI M, CONNELLY L. Effects of matrix moisture on gas diffusion and flow in coal[J]. Fuel, 2010, 89(11):3207-3217. doi: 10.1016/j.fuel.2010.05.038
    [13]
    赵东, 冯增朝, 赵阳升.基于吸附动力学理论分析水分对煤体吸附特性的影响[J].煤炭学报, 2014, 39(3):518-523. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201403023.htm

    ZHAO Dong, FENG Zeng-chao, ZHAO Yang-sheng. Effects of liquid water on coalbed methane adsorption characteristics based on the adsorption kinetic theory[J]. J China Coal Soc, 2014, 39(3):518-523. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201403023.htm
    [14]
    KROOSS B M, VAN Bergen F, GENSTERBLUM Y, SIEMONS N., PAGNIER H J M, DAVID P. High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals[J]. Int J Coal Geol, 2002, 51(2):69-92. doi: 10.1016/S0166-5162(02)00078-2
    [15]
    刘高峰, 张子戌, 宋志敏, 郎伟伟.高温高压平衡水条件下煤吸附CH4实验[J].煤炭学报, 2012, 37(5):794-797. http://d.wanfangdata.com.cn/Periodical/mtxb201205014

    LIU Gao-feng, ZHANG Zi-xu, SONG Zhi-min, LANG Wei-wei. Adsorption experiments on CH4 under the conditions of high temperature and pressure and equilibrium water[J]. J China Coal Soc, 2012, 37(5):794-797. http://d.wanfangdata.com.cn/Periodical/mtxb201205014
    [16]
    CLARKSON C R, BUSTIN R M. Binary gas adsorption/desorption isotherms:effect of moisture and coal composition upon carbon dioxide selectivity over methane[J]. Int J Coal Geol, 2000, 42(4):241-271. doi: 10.1016/S0166-5162(99)00032-4
    [17]
    王俊峰, 张力, 赵东.温度及含水率对切削原煤吸附瓦斯特性的影响[J].煤炭学报, 2012, 36(12):2086-2091. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201112025.htm

    WANG Jun-feng, ZHANG Li, ZHAO Dong. Effect of temperature and moisture on raw coal adsorption characteristics[J]. J China Coal Soc, 2012, 36(12):2086-2091. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201112025.htm
    [18]
    张时音, 桑树勋, 杨志刚.液态水对煤吸附甲烷影响的机理分析[J].中国矿业大学学报, 2009, 38(5):707-712. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200905022.htm

    ZHANG Shi-yin, SANG Shu-xun, YANG Zhi-gang. Mechanism analysis on the effect of liquid water on coal adsorbing methane[J]. J China Univ Min Technol, 2009, 38(5):707-712. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200905022.htm
    [19]
    JOUBERT J I, GREIN C T, BIENSTOCK D. Sorption of methane in moist coal[J]. Fuel, 1973, 52(3):181-185. doi: 10.1016/0016-2361(73)90076-8
    [20]
    DAY S, SAKUROVS R, WEIR S. Supercritical gas sorption on moist coals[J]. Int J Coal Geol, 2008, 74(3):203-214. https://www.sciencedirect.com/science/article/pii/S0166516208000311
    [21]
    LEE H H, KIM H J, SHI Y, KEFFER D, LEE C H. Competitive adsorption of CO2/CH4 mixture on dry and wet coal from subcritical to supercritical conditions[J]. Chem Eng J, 2013, 230(16):93-101. http://www.sciencedirect.com/science/article/pii/S1385894713008097
    [22]
    BROCHARD L, VANDSMME M, PELLENQ R J M, FEN Chong T. Adsorption-induced deformation of microporous materials:coal swelling induced by CO2-CH4 competitive adsorption[J]. Langmuir, 2012, 28(5):2659-2670. doi: 10.1021/la204072d
    [23]
    BILLEMONT P, COASNE B, DE Weireld G. An experimental and molecular simulation study of the adsorption of carbon dioxide and methane in nanoporous carbons in the presence of water[J]. Langmuir, 2010, 27(3):1015-1024.
    [24]
    BILLEMONT P, COASNE B, DE Weireld G. Adsorption of carbon dioxide, methane, and their mixtures in porous carbons:effect of surface chemistry, water content, and pore disorder[J]. Langmuir, 2013, 29(10):3328-3338. doi: 10.1021/la3048938
    [25]
    ZHANG J, CLENNELL M B, DEWHURST D N, LIU K. Combined Monte Carlo and molecular dynamics simulation of methane adsorption on dry and moist coal[J]. Fuel, 2014, 122(15):186-197. http://www.sciencedirect.com/science/article/pii/S001623611400009X
    [26]
    熊健, 刘向君, 梁利喜.甲烷在官能团化石墨中吸附行为的影响因素研究[J].中国矿业大学学报, 2017, 46(2):337-346. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201702018.htm

    XIONG Jian, LIU Xiang-jun, LIANG Li-xi. Investigation on the influence factors of the methane adsorption in functionalized graphite[J]. J China Univ Min Technol, 2017, 46(2):337-346. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201702018.htm
    [27]
    LIU X Q, HE X, QIU N X, YANG X., TIAN Z Y, LI M J, XUE Y. Molecular simulation of CH4, CO2, H2O and N2 molecules adsorption on heterogeneous surface models of coal[J]. Appl Surf Sci, 2016, 389:894-905. doi: 10.1016/j.apsusc.2016.08.021
    [28]
    XU D, XIAO P, ZHANG J, LI G, XIAO G, WEBLEY P A, ZHAI Y. Effects of water vapour on CO2 capture with vacuum swing adsorption using activated carbon[J]. Chem Eng J, 2013, 230(16):64-72. http://www.sciencedirect.com/science/article/pii/S1385894713008619
    [29]
    DI Biase E, SARKISOV L. Molecular simulation of multi-component adsorption processes related to carbon capture in a high surface area, disordered activated carbon[J]. Carbon, 2015, 94:27-40. doi: 10.1016/j.carbon.2015.06.056
    [30]
    XIANG J, ZENG F G, Bin L I, ZHANG L, LI M F, LIANG H Z. Construction of macromolecular structural model of anthracite from Chengzhuang coal mine and its molecular simulation[J]. J Fuel Chem Technol, 2013, 41(4):391-400. doi: 10.1016/S1872-5813(13)60022-5
    [31]
    XIANG J, ZENG F G, LIANG H Z, SUN B L, ZHANG L, LI M F, JIA J B. Model construction of the macromolecular structure of Yanzhou Coal and its molecular simulation[J]. J Fuel Chem Technol, 2011, 39(7):481-488. doi: 10.1016/S1872-5813(11)60031-5
    [32]
    HU H, LI X, FANG Z, WEI N, LI Q. Small-molecule gas sorption and diffusion in coal:Molecular simulation[J]. Energy, 2010, 35(7):2939-2944. doi: 10.1016/j.energy.2010.03.028
    [33]
    相建华, 曾凡桂, 梁虎珍, 李彬, 宋晓夏. CH4/CO2/H2O在煤分子结构中吸附的分子模拟[J].中国科学:地球科学, 2014, 44(7):1418-1428.

    XIANG Jian-hua, ZENG Fan-gui, LIANG Hu-zhen, LI Bin, SONG Xiao-xia. Molecular simulation of the CH4/CO2/H2O adsorption onto the molecular structure of coal[J]. Sci China:Earth Sci, 2014, 44(7):1418-1428.
    [34]
    MOHAMMAD S A, GASEM K A M. Multiphase analysis for high-pressure adsorption of CO2/water mixtures on wet coals[J]. Energ Fuels, 2012, 26(6):3470-3480. doi: 10.1021/ef300126x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (103) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return