Volume 46 Issue 3
Mar.  2018
Turn off MathJax
Article Contents
XIA Fu-ting, ZHANG Jin-hui, YANG Yun-han, YANG Cui-cui, LI Xiang-hua, SONG Zhong-xian, ZHANG Qiu-lin, PENG Jin-hui. Catalytic performance and hydrothermal stability of Cu/SAPO-34 catalyst in the selective catalytic oxidation of NH3[J]. Journal of Fuel Chemistry and Technology, 2018, 46(3): 328-336.
Citation: XIA Fu-ting, ZHANG Jin-hui, YANG Yun-han, YANG Cui-cui, LI Xiang-hua, SONG Zhong-xian, ZHANG Qiu-lin, PENG Jin-hui. Catalytic performance and hydrothermal stability of Cu/SAPO-34 catalyst in the selective catalytic oxidation of NH3[J]. Journal of Fuel Chemistry and Technology, 2018, 46(3): 328-336.

Catalytic performance and hydrothermal stability of Cu/SAPO-34 catalyst in the selective catalytic oxidation of NH3

Funds:

The project was supported by the National Natural Science Foundation of China 21567030

The project was supported by the National Natural Science Foundation of China 11447191

the National Program on Key Basic Research Project of China 973 program

the National Program on Key Basic Research Project of China 2014CB643404

Natural Science Fund Item of Yunnan Province 2013FD033

  • Received Date: 2017-09-13
  • Rev Recd Date: 2018-01-19
  • Available Online: 2021-01-23
  • Publish Date: 2018-03-10
  • A series of Cu/SAPO-34 catalysts for ammonia selective catalytic oxidation (NH3-SCO) were prepared by impregnation method. The results of activity test indicated that the NH3 conversion over 10%-Cu/SAPO-34 catalyst was nearly 100% at 300℃ and N2 selectivity was more than 90% in the range of test temperature. Meanwhile, the characterization results of XRD, BET, UV-vis, H2-TPR and XPS showed that the highly dispersed CuO species in Cu/SAPO-34 catalyst were the main active component. Furthermore, the aged 10%-Cu/SAPO-34 catalyst performed better NH3-SCO activity at low temperature, while the N2 selectivity dramatically decreased at 325℃, SAPO-34 zeolite crystallinity would deteriorate under hydrothermal treatment.
  • loading
  • [1]
    张相俊, 刘晓刚, 李清雍, 李岩, 魏波, 王虹, 李翠清, 宋永吉.载体对铜基催化剂NH3-SCR低温脱硝性能的影响[J].燃料化学学报, 2017, 45(2):220-226. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18982.shtml

    ZHANG Xiang-jun, LIU Xiao-gang, LI Qing-yong, LI Yan, WEI Bo, WANG Hong, LI Cui-qing, SONG Yong-ji. Effect of carrier on the performance of copper based catalyst for selective catalytic reduction of NO with NH3 at low temperature[J]. J Fuel Chem Technol, 2017, 45(2):220-226. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18982.shtml
    [2]
    徐宝强, 徐海迪, 曹毅, 兰丽, 杨怡, 张艳华, 李元山, 龚茂初, 陈耀强. Zr的添加对提高NH3选择性催化还原NOx整体式催化剂热稳定性的影响[J].无机化学学报, 2016, 32(3):517-526. doi: 10.11862/CJIC.2016.039

    XU Bao-qiang, XU Hai-di, CAO Yi, LAN Li, YANG Yi, ZHANG Yan-hua, LI Yuan-shan, GONG Mao-chu, CHEN Yao-qiang. Promotional effect of Zr on thermal stability of CeTiOx monolith catalyst for selective catalytic reduction of NOx with ammonia[J]. Chin J Inorg Chem, 2016, 32(3):517-526. doi: 10.11862/CJIC.2016.039
    [3]
    姚小江, 贡营涛, 李红丽, 杨复沫.铈基催化剂用于NH3选择性催化还原NOx的研究进展[J].物理化学学报, 2015, 31(5):817-828. doi: 10.3866/PKU.WHXB201503253

    YAO Xiao-jiang, GONG Ying-tao, LI Hong-li, YANG Fu-mo. Research progress of ceria-based catalysts in the selective catalytic reduction of NOx by NH3[J]. Acta Phys Chim Sin, 2015, 31(5):817-828. doi: 10.3866/PKU.WHXB201503253
    [4]
    王燕彩, 刘昕, 宁平, 张秋林, 张金辉, 徐利斯, 唐小苏, 王明智.制备方法对氧化锰八面体分子筛的NH3选择性催化还原NOx性能的影响[J].燃料化学学报, 2014, 42(11):1357-1364. doi: 10.3969/j.issn.0253-2409.2014.11.013

    WANG Yyan-cai, LIU Xin, NING Ping, ZHANG Qiu-lin, ZHANG Jin-hui, XU Lisi, TANG Xiao-su, WANG Ming-zhi. Effect of preparation methods on selective catalytic reduction of NOx with NH3 over manganese oxide octahedral molecular sieves[J]. J Fuel Chem Technol, 2014, 42(11):1357-1364. doi: 10.3969/j.issn.0253-2409.2014.11.013
    [5]
    石琳, 于铁, 王欣全, 王军, 沈美庆. NH3-SCR反应过程中NH3和NOx在Cu/SAPO-34分子筛催化剂上的吸附特性和作用[J].物理化学学报, 2013, 29(7):1550-1557. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX201307027.htm

    SHI Lin, YU Tie, WANG Xin-quan, WANG Jun, SHEN Mei-qing. Properties and roles of adsorbed NH3 and NOx over Cu/SAPO-34 zeolite catalyst in NH3-SCR process[J]. Acta Physico-Chimica Sinica, 2013, 29(7):1550-1557. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX201307027.htm
    [6]
    吴大旺, 张秋林, 林涛, 龚茂初, 陈耀强. Fe对Mn/CeO2-TiO2催化剂低温NH3选择性催化还原NO的影响[J].无机化学学报, 2012, 27(5):495-500. http://www.chxb.cn/CN/abstract/abstract21934.shtml

    WU Da-wang, ZHANG Qiu-lin, LIN Tao, GONG Mao-chu, CHEN Yao-qiang. Effect of Fe on the selective catalytic reduction of NO by NH3 at low temperature over Mn/CeO2-TiO2 Catalyst[J]. Chin J Inorg Chem, 2012, 27(5):495-500. http://www.chxb.cn/CN/abstract/abstract21934.shtml
    [7]
    OLOFSSON G, HINZ A, ANDERSSON A. Selective catalytic oxidation (SCO) of ammonia to nitrogen over hydrotalcite originated Mg-Cu-Fe mixed metal oxides[J]. Chem Eng Sci, 2004, 59:4113-4123. doi: 10.1016/j.ces.2004.03.047
    [8]
    SOBCZYK D P, HENSEN E J M, JONG A M DE, SANTEN R A VAN. Selective catalytic oxidation (SCO) of ammonia to nitrogen over hydrotalcite originated Mg-Cu-Fe Mixed metal oxides[J]. Top Catal, 2003, 23:109-117. doi: 10.1023/A:1024876421421
    [9]
    FICKEL D W, ADDIO E D, LAUTERBACH J A, R F LOBO. The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites[J]. Appl Catal B:Environ, 2011, 102:441-448. doi: 10.1016/j.apcatb.2010.12.022
    [10]
    SCHMIEG S J, OH S H, KIM C H, BROWN D B, LEE J H, PEDEN C H F, KIM D H. Study of coordination environments around Pd and Pt in a Pd-core Pt-shell nanoparticle during heating[J]. Catal Today, 2012, 184:252-261. doi: 10.1016/j.cattod.2011.10.034
    [11]
    KWAK J H, TRAN D, BURTON S D, SZANYI J, LEE J H, PEDEN C H F. The effect of copper loading on the selective catalytic reduction of nitric oxide by ammonia over Cu-SSZ-13[J]. J Catal, 2012, 287:203-209. doi: 10.1016/j.jcat.2011.12.025
    [12]
    LIU G, TIAN P, LI J, ZHANG D, ZHOU F, LIU Z. Synthesis, characterization and catalytic properties of SAPO-34 synthesized using diethylamine as a template[J]. Microporous Mesoporous Mater, 2008, 111:143-149. doi: 10.1016/j.micromeso.2007.07.023
    [13]
    TAN J, LIU Z, BAO X, LIU X, HAN X, HE C, ZHAI R. Comparison of HZSM-5 zeolite and SAPO (-18 and -34) based catalysts for the production of light olefins from DME[J]. Microporous Mesoporous Mater, 2002, 53:97-108. doi: 10.1016/S1387-1811(02)00329-3
    [14]
    KIM T W, SONG M W, KOH H L, KIM K L. Surface properties and reactivity of Cu/g-Al2O3 catalysts for NO reduction by C3H6[J]. Appl Catal A:Gen, 2001, 210:35-44. doi: 10.1016/S0926-860X(00)00801-2
    [15]
    WAN H, WANG Z, ZHU J, LI X, LIU B, GAO F, DONG L, CHEN Y. Influence of CO pretreatment on the activities of CuO/gamma-Al2O3 catalysts in CO+O-2 reaction[J]. Appl Catal B:Envirn, 2008, 79:254-261. doi: 10.1016/j.apcatb.2007.10.025
    [16]
    XU B, DONG L, CHEN Y. Influence of CuO loading on dispersion and reduction behavior of CuO/TiO2 (anatase) system[J]. J Chem Soc, 1998, 94:1905-1909. http://pubs.rsc.org/en/Content/ArticleLanding/FT/1998/A801603H
    [17]
    PESTRYAKOV A N, PETRANOVSKII V P, KRYAZHOV A, OZHERELIEV O, PFANDER N, KNOP-GERICKE A Chem Study of copper nanoparticles formation on supports of different nature by UV-Vis diffuse reflectance spectroscopy[J]. Phys Lett, 2004, 385:173-176. https://www.sciencedirect.com/science/article/pii/S0009261403021638
    [18]
    PRALIAUD H, MIKHAILENKO S, CHAJAR Z, PRIMET M. Surface and bulk properties of Cu-ZSM-5 and Cu/Al2O3 solids during redox treatments. Correlation with the selective reduction of nitric oxide by hydrocarbons[J]. Appl Catal B:Environ, 1998, 16:359-374. doi: 10.1016/S0926-3373(97)00093-3
    [19]
    FAN S, XUE J, YU T, FAN D, HAO T, SHEN M, LI W. The effect of synthesis methods on Cu species and active sites over Cu/SAPO-34 for NH3-SCR reaction[J]. Catal Sci Technol, 2013, 3:2357-2364. doi: 10.1039/c3cy00267e
    [20]
    WANG J, YU T, WANG X, QI G, XUE J, SHEN M, LI W. The influence of silicon on the catalytic properties of Cu/SAPO-34 for NOx reduction by ammonia-SCR[J]. Appl Catal B:Envirn, 2012, 127:137-147. doi: 10.1016/j.apcatb.2012.08.016
    [21]
    CALLIGARIS M, NARDIN G. Cation site location in hydrated chabazites. Crystal structure of barium-and cadmium-exchanged chabazites[J]. Zeolites, 1982, 2:200-204. doi: 10.1016/S0144-2449(82)80052-3
    [22]
    KEFIROV R, PENKOVA A, HADJⅡVANOV K, DZWIGAJ S, CHE M. Stabilization of Cu+ ions in BEA zeolite:Study by FT-IR spectroscopy of adsorbed CO and TPR[J]. Microporous Mesoporous Mater, 2008, 116:180-187. doi: 10.1016/j.micromeso.2008.03.032
    [23]
    RIBEIRO M F, SILVA J M, BRIMAUD S, ANTUNES A P, SILVA E R, FERNANDES A, MAGNOUX P, MURPHY D M. Improvement of toluene catalytic combustion by addition of cesium in copper exchanged zeolites[J]. Appl Catal B:Envirn, 2007, 70:384-392. doi: 10.1016/j.apcatb.2006.01.027
    [24]
    LOPEZ-SUAREZ F E, BUENO-LOEZ A, ILLAN-GOMEZ M J. Cu/Al2O3 catalysts for soot oxidation:Copper loading effect[J]. Appl Catal B:Envirn, 2008, 84:651-658. doi: 10.1016/j.apcatb.2008.05.019
    [25]
    ÁGUILA G, GRACIA F, CORTÉS J, ARAYA P. Effect of copper species and the presence of reaction products on the activity of methane oxidation on supported CuO catalysts[J]. Appl Catal B:Envirn, 2008, 77:325-338. doi: 10.1016/j.apcatb.2007.08.002
    [26]
    WEI Y, LIU J, ZHAO Z, DUAN A, JIANG G. The catalysts of three-dimensionally ordered macroporous Ce1-xZrx O2-supported gold nanoparticles for soot combustion:The metal-support interaction[J]. J Catal, 2012, 287:13-29. doi: 10.1016/j.jcat.2011.11.006
    [27]
    MA L, CHENG Y, CAVATAIO G, MCCABE R W, FU L, LI J. Characterization of commercial Cu-SSZ-13 and Cu-SAPO-34 catalysts with hydrothermal treatment for NH3-SCR of NO x in diesel exhaust[J]. Chem Eng J, 2013, 225:323-330. doi: 10.1016/j.cej.2013.03.078
    [28]
    LIESE T, GRVNERT W. Cu-Na-ZSM-5 catalysts prepared by chemical transport:Investigations on the role of brønsted acidity and of excess copper in the selective catalytic reduction of NO by propene[J]. J Catal, 1997, 172:34-45. doi: 10.1006/jcat.1997.1812
    [29]
    CORMA A, PALOMARES A, MÁRQUEZ F. Determining the nature of the active sites of Cu-beta zeolites for the selective catalytic reduction (SCR) of NOx by using a coupled reaction-XAES/XPS Study[J]. J Catal, 1997, 170:132-139. doi: 10.1006/jcat.1997.1739
    [30]
    WOLLNER A, LANGE F, SCHMELZ H, KNOZINGER H. ChemInform Abstract:Characterization of mixed copper-manganese oxides supported on titania catalysts for selective oxidation of ammonia[J]. Appl Catal A:Gen, 1993, 94:181-203. doi: 10.1016/0926-860X(93)85007-C
    [31]
    KUNDAKOVIC L, FLYTZANI-STEPHANOPOULOS M. Reduction characteristics of copper oxide in cerium and zirconium oxide systems[J]. Appl Catal A:Gener, 1998, 171:13-29. doi: 10.1016/S0926-860X(98)00056-8
    [32]
    WANG L, GAUDET J R, LI W, WENG D. Migration of Cu species in Cu/SAPO-34 during hydrothermal aging[J]. J Catal, 2013, 306:68-77. doi: 10.1016/j.jcat.2013.06.010
    [33]
    KORHONEN S T, FICKEL D W, LOBO R F, WECKHUYSEN B M, BEALE A M. Isolated Cu2+ions:Active sites for selective catalytic reduction of NO[J]. Chem Commun, 2011, 47:800-802. doi: 10.1039/C0CC04218H
    [34]
    WAN Y, MA J, WANG Z, ZHOU W, KALIAGUINE S. Selective catalytic reduction of NO over Cu-Al-MCM-41[J]. J Catal, 2004, 227:242-252. doi: 10.1016/j.jcat.2004.07.016
    [35]
    ZHANG Y, CHEN C, LIN X, LI D, CHEN X, ZHAN Y, ZHENG QI. CuO/ZrO2 catalysts for water-gas shift reaction:Nature of catalytically active copper species[J]. Int J Hydrogen Energy, 2014, 39:3746-3754. doi: 10.1016/j.ijhydene.2013.12.161
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (99) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return