Volume 44 Issue 3
Mar.  2016
Turn off MathJax
Article Contents
JIANG Xiao-yan, LU Qiang, DONG Xiao-chen, HU Bin, DONG Chang-qing. Theoretical study on the effects of the substituent groups on the homolysis of the ether bond in lignin trimer model compounds[J]. Journal of Fuel Chemistry and Technology, 2016, 44(3): 335-341.
Citation: JIANG Xiao-yan, LU Qiang, DONG Xiao-chen, HU Bin, DONG Chang-qing. Theoretical study on the effects of the substituent groups on the homolysis of the ether bond in lignin trimer model compounds[J]. Journal of Fuel Chemistry and Technology, 2016, 44(3): 335-341.

Theoretical study on the effects of the substituent groups on the homolysis of the ether bond in lignin trimer model compounds

Funds:

National Natural Science Foundation of China 51576064

and Fundamental Research Funds for the Central Universities 2014ZD17

  • Received Date: 2015-09-25
  • Rev Recd Date: 2015-12-05
  • Available Online: 2021-01-23
  • Publish Date: 2016-03-30
  • The homolytic bond dissociation energies (BDEs) of Cα-O and Cβ-O bonds in 27 lignin trimer model compounds were calculated by employing density functional theory methods at M062X level with 6-31++G (d, p) basis set; the effects of various substituent groups (CH3, CH2OH and OCH3) at different positions on the BDEs of Cα-O and Cβ-O bonds were investigated. The results indicated that a single methoxyl group at R2 or R3 has a minor influence on the BDE of Cβ-O bond, whereas two methoxyl groups at R2 and R3 lead to an obvious decrease in the BDE of Cβ-O bond. The decrement in the BDE of Cβ-O bond from the methoxyl groups at R2 and R3 can be enhanced by the methoxyl groups at R4 and R5, but is hardly influenced by the substituent groups at R1. Meanwhile, the BDE of Cα-O bond is gradually reduced when the H atoms at R4 and R5 are successively substituted with methoxyl groups; the decrement in the BDE of Cα-O bond from the methoxyl groups at R4 and R5 can be strengthened by the methoxyl groups at R2 and R3. Furthermore, the methyl and hydroxymethyl groups at R1 can gradually increase the BDE of Cα-O bond and this effect is weakened when the H atoms at R2 and R3 are successively substituted with methoxyl groups. The methyl group at R1 has little influence on the BDE of Cβ-O bond, which is however dramatically increased by the hydroxymethyl group at R1.
  • loading
  • [1]
    BRIDGWATER A V, PEACOCKE G V C. Fast pyrolysis processes for biomass[J]. Renew Sust Energ Rev, 2000, 4(1): 1-73. doi: 10.1016/S1364-0321(99)00007-6
    [2]
    BRIDGWATER A V. Review of fast pyrolysis of biomass and product upgrading[J]. Biomass Bioenerg, 2012, 38: 68-94. doi: 10.1016/j.biombioe.2011.01.048
    [3]
    王琦, 王树荣, 王乐, 谭洪, 骆仲泱, 岑可法.生物质快速热裂解制取生物油试验研究[J].工程热物理学报, 2007, 28(1): 173-176. http://d.wanfangdata.com.cn/Periodical/gcrwlxb200701055

    WANG Qi, WANG Shu-rong, WANG Le, TAN Hong, LUO Zhong-yang, CEN Ke-fa. Experimental study of bimass flash pyrolysis for bio-oil production[J]. J Eng Thermophys, 2007, 28(1): 173-176. http://d.wanfangdata.com.cn/Periodical/gcrwlxb200701055
    [4]
    BAI X, KIM K H, BROWN R C, DALLUGE E, HUTCHINSON C, LEE Y J, DALLUGE D. Formation of phenolic oligomers during fast pyrolysis of lignin[J]. Fuel, 2014, 128: 170-179. doi: 10.1016/j.fuel.2014.03.013
    [5]
    黄金保, 刘朝, 任丽蓉, 童红, 李伟民, 伍丹.木质素模化物紫丁香酚热解机理的量子化学研究[J].燃料化学学报, 2013, 41(6): 657-666. doi: 10.1016/S1872-5813(13)60031-6

    HUANG Jin-bao, LIU Chao, REN Li-rong, TONG Hong, LI Wei-min, WU Dan. Studies on pyrolysis mechanism of syringol as lignin model compound by quantum chemistry[J]. J Fuel Chem Technol, 2013, 41(6): 657-666. doi: 10.1016/S1872-5813(13)60031-6
    [6]
    DONG C Q, ZHANG Z F, LU Q, YANG Y P. Characteristics and mechanism study of analytical fast pyrolysis of poplar wood[J]. Energy Convers Manage, 2012, 57: 49-59. doi: 10.1016/j.enconman.2011.12.012
    [7]
    CHU S, SUBRAHMANYAM A V, HUBER G W. The pyrolysis chemistry of a β-O-4 type oligomeric lignin model compound[J]. Green Chem, 2013, 15(1): 125-136. doi: 10.1039/C2GC36332A
    [8]
    DORRESTIJN E, LAARHOVEN L J J, ARENDS I W C E, MULDER P. The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal[J]. J Anal Appl Pyrolysis, 2000, 54(1/2): 153-192. https://www.researchgate.net/publication/223233920_The_Occurrence_and_Reactivity_of_Phenoxyl_Linkages_in_Lignin_and_Low_Rank_Coal
    [9]
    KIM K H, BAI X, BROWN R C. Pyrolysis mechanisms of methoxy substituted α-O-4 lignin dimeric model compounds and detection of free radicals using electron paramagnetic resonance analysis[J]. J Anal Appl Pyrolysis, 2014, 110: 254-263. doi: 10.1016/j.jaap.2014.09.008
    [10]
    王华静, 赵岩, 王晨, 傅尧, 郭庆祥.木质素二聚体模型物裂解历程的理论研究[J].化学学报, 2009, 67(9): 893-900. http://www.cnki.com.cn/Article/CJFDTOTAL-HXXB200909004.htm

    WANG Hua-jing, ZHAO Yan, WANG Chen, FU Yao, GUO Qing-xiang. Theoretical study on the pyrolysis process of lignin dimer model compounds[J]. Acta Chim Sin, 2009, 67(9): 893-900. http://www.cnki.com.cn/Article/CJFDTOTAL-HXXB200909004.htm
    [11]
    张阳, 蒋晓燕, 王贤华, 陆强, 董长青, 杨勇平. β-O-4型木质素二聚体模型化合物热解机理研究[J].太阳能学报, 2015, 36(2): 265-273. http://www.tynxb.org.cn//CN/abstract/abstract10032.shtml

    ZHANG Yang, JIANG Xiao-yan, WANG Xian-hua, LU Qiang, DONG Chang-qing, YANG Yong-ping. Study on pyrolysis mechanism of lignin dimer model with β-O-4 linkage[J]. Acta Energ Sol Sin, 2015, 36(2): 265-273. http://www.tynxb.org.cn//CN/abstract/abstract10032.shtml
    [12]
    HUANG J, HE C. Pyrolysis mechanism of α-O-4 linkage lignin dimer: A theoretical study[J]. J Anal Appl Pyrolysis, 2015, 113: 655-664. doi: 10.1016/j.jaap.2015.04.012
    [13]
    BRITT P F, BUCHANAN A C, COONEY M J, MARTINEAU D R. Flash vacuum pyrolysis of methoxy-substituted lignin model compounds[J]. J Org Chem, 2000, 65(5): 1376-1389. doi: 10.1021/jo991479k
    [14]
    BRITT P F, KIDDER M K, BUCHANAN A C. Oxygen substituent effects in the pyrolysis of phenethyl phenyl ethers[J]. Energ Fuel, 2007, 21(6): 3102-3108. doi: 10.1021/ef700354y
    [15]
    BESTE A, BUCHANAN A C. Computational study of bond dissociation enthalpies for lignin model compounds. Substituent effects in phenethyl phenyl ethers[J]. J Org Chem, 2009, 74(7): 2837-2841. doi: 10.1021/jo9001307
    [16]
    BESTE A, BUCHANAN A C. Computational investigation of the pyrolysis product selectivity for alpha-hydroxy phenethyl phenyl ether and phenethyl phenyl ether: Analysis of substituent effects and reactant conformer selection[J]. J Phys Chem A, 2013, 117(15): 3235-3242. doi: 10.1021/jp4015004
    [17]
    蒋晓燕, 陈晨, 董晓晨, 陆强, 董长青. α, β-双醚型木质素三聚体模化物热解机理模拟计算[J].农业工程学报, 2015, 31(16): 229-234. http://www.tcsae.org/nygcxb/ch/reader/view_abstract.aspx?file_no=20151630

    JIANG Xiao-yan, CHEN Chen, DONG Xiao-chen, LU Qiang, DONG Chang-qing. Computational study on pyrolysis mechanism of an α, β-diether-type lignin trimer model compound[J]. Trans Chin Soc Agric Eng, 2015, 31(16): 229-234. http://www.tcsae.org/nygcxb/ch/reader/view_abstract.aspx?file_no=20151630
    [18]
    FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09[CP]. Gaussian, Inc. Pittsburgh PA, 2009.
    [19]
    BESTE A, BUCHANAN A C. Substituent effects on the reaction rates of hydrogen abstraction in the pyrolysis of phenethyl phenyl ethers[J]. Energy Fuels, 2010, 24: 2857-2867. doi: 10.1021/ef1001953
    [20]
    PARTHASARATHI R, ROMERO R A, REDONDO A, GNANAKARAN S. Theoretical study of the remarkably diverse linkages in lignin[J]. J Phys Chem Lett, 2011, 2(20): 2660-2666. doi: 10.1021/jz201201q
    [21]
    ELDER T. A computational study of pyrolysis reactions of lignin model compounds[J]. Holzforschung, 2010, 64(4): 435-440. https://www.treesearch.fs.fed.us/pubs/36249
    [22]
    HUANG J, LIU C, WU D, TONG H, REN L. Density functional theory studies on pyrolysis mechanism of β-O-4 type lignin dimer model compound[J]. J Anal Appl Pyrolysis, 2014, 109: 98-108. doi: 10.1016/j.jaap.2014.07.007
    [23]
    张芳沛, 程新路, 刘子江, 胡栋, 刘永刚.硝酸丙酯键离解能和热解机理的密度泛函理论研究[J].高压物理学报, 2005, 19(2): 189-192. http://www.cnki.com.cn/Article/CJFDTOTAL-GYWL200502016.htm

    ZHANG Fang-pei, CHENG Xin-lu, LIU Zi-jiang, HU Dong, LIU Yong-gang. Density functional studies on the bond dissociation energy and pyrolysis mechanism of propyl nitrate[J]. Chin J High Pressure Phys, 2005, 19(2): 189-192. http://www.cnki.com.cn/Article/CJFDTOTAL-GYWL200502016.htm
    [24]
    黄金保, 武书彬, 陈皓, 雷鸣, 梁嘉晋, 童红.木质素模化物键离解能的理论研究[J].燃料化学学报, 2015, 43(4): 429-436. doi: 10.1016/S1872-5813(15)30011-6

    HUANG Jin-bao, WU Shu-bin, CHENG Hao, LEI Ming, LIANG Jia-jin, TONG Hong. Theoretical study of bond dissociation energies for lignin model compounds[J]. J Fuel Chem Technol, 2015, 43(4): 429-436. doi: 10.1016/S1872-5813(15)30011-6
    [25]
    KIM S, CHMELY S C, NIMLOS M R, BOMBLE Y J, FOUST T D, PATON R S, BECKHAM G T. Computational study of bond dissociation enthalpies for a large range of native and modified lignins[J]. J Phys Chem Lett, 2011, 2(22): 2846-2852. doi: 10.1021/jz201182w
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (112) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return