Volume 47 Issue 3
Mar.  2019
Turn off MathJax
Article Contents
QIU Qian-yuan, CHEN Qian-yang, LIU Zhi-jun, LIU Jiang. Biochar derived from coconut as fuel for the direct carbon solid oxide fuel cell[J]. Journal of Fuel Chemistry and Technology, 2019, 47(3): 352-360.
Citation: QIU Qian-yuan, CHEN Qian-yang, LIU Zhi-jun, LIU Jiang. Biochar derived from coconut as fuel for the direct carbon solid oxide fuel cell[J]. Journal of Fuel Chemistry and Technology, 2019, 47(3): 352-360.

Biochar derived from coconut as fuel for the direct carbon solid oxide fuel cell

Funds:

The project was supported by the National Natural Science Foundation of China 91745203

The project was supported by the National Natural Science Foundation of China U1601207

Special Funds of Guangdong Province Public Research and Ability Construction 2014A010106008

Guangdong Innovative and Entrepreneurial Research Team Program 2014ZT05N200

More Information
  • Corresponding author: LIU Jiang, Tel: 13539890869, E-mail: jiangliu@scut.edu.cn
  • Received Date: 2018-11-19
  • Rev Recd Date: 2019-01-08
  • Available Online: 2021-01-23
  • Publish Date: 2019-03-10
  • Coconut char is prepared by pyrolysis and used as the fuel for the direct carbon solid oxide fuel cell (DC-SOFCs), which are composed of yttrium-stabilized zirconia (YSZ) electrolyte and silver and gadolinium-doped ceria (Ag-GDC) cermet electrodes. The microstructure and composition of coconut char are characterized and the performances of DC-SOFCs with coconut char as fuel was investigated. The results show that the as-prepared coconut biochar has a mesoporous structure and a particle size of several microns; moreover, it contains K and Ca elements, favorable for the Boudouard reaction. A peak power density of 255 mW/cm2 is observed for the DC-SOFC operated at 800 ℃ with coconut char as fuel; it increases to 274 mW/cm2 when the char is loaded with Fe as a promoter to improve the reverse Boudouard reaction. The discharging time of the cell with 0.5 g Fe-loaded coconut char operated at a constant current density of 0.5 A/cm2 lasts for 17.6 h, representing a fuel conversion of 39%, demonstrating the feasibility and superiority of coconut char as a fuel for DC-SOFCs.
  • loading
  • [1]
    RAGAUSKAS A J, WILLIAMS C K, DAVISON B H, BRITOVSEK G, CAIRNEY J, ECKERT C A, JR F W, HALLETT J P, LEAK D J, LIOTTA C L. The path forward for biofuels and biomaterials[J]. Science, 2006, 311(5760):484-489. doi: 10.1126/science.1114736
    [2]
    CHEN J, LI C, RISTOVSKI Z, MILIC A, GU Y, ISLAM M S, WANG S, HAO J, ZHANG H, HE C, GUO H, FU H, MILJEVIC B, MORAWSKA L, THAI P, LAM Y F, PEREIRA G, DING A, HUANG X, DUMKA U C. A review of biomass burning:Emissions and impacts on air quality, health and climate in China[J]. Sci Total Environ, 2017, 579:1000-1034. doi: 10.1016/j.scitotenv.2016.11.025
    [3]
    潘根兴, 林振衡, 李恋卿, 张阿凤, 郑金伟, 张旭辉.试论我国农业和农村有机废弃物生物质碳产业化[J].中国农业科技导报, 2011, 13(1):75-82. doi: 10.3969/j.issn.1008-0864.2011.01.12

    PAN Gen-xing, LING Zhen-heng, LI Lian-qing, ZHANG A-feng, ZHENG Jin-wei, ZHANG Xu-hui. Prospective on biomass carbon industrialization of organic waste from agriculture and rural areas in China[J]. J Agri Sci Technol, 2011, 13(1):75-82. doi: 10.3969/j.issn.1008-0864.2011.01.12
    [4]
    王媛媛, 秦海棠, 邓福明, 弓淑芳, 刘蕊, 郑小蔚, 范海阔.基于世界粮农组织2000-2016年统计数据库的全球椰子种植业发展概况及趋势研究[J].世界热带农业信息, 2018, 5: 1-13.

    WANG Yuan-yuan, QIN Hai-tang, DENG Fu-ming, GONG Shu-fang, ZHENG Xiao-wei, FAN Hai-kuo. Overview and trend study of global coconut plantation industry development based on faostat from 2000 to 2016[J]. World Trop Agri Inform, 2018, 5: 1-13.
    [5]
    卢琨. 2015-2016年我国椰子产业的生产与贸易发展形势分析[J].世界热带农业信息, 2017, 9/10:1-6. http://d.old.wanfangdata.com.cn/Periodical/sjrdnyxx201709001

    LU Kun. Analysisi of production and trade development situation of chinese coconut industry[J]. World Trop Agri Inform, 2017, 9/10:1-6. http://d.old.wanfangdata.com.cn/Periodical/sjrdnyxx201709001
    [6]
    MINH N Q. Ceramic fuel cells[J]. J Am Ceram Soc, 1993, 76(3):563-588. doi: 10.1111/jace.1993.76.issue-3
    [7]
    HAJIMOLANA S A, HUSSAIN M A, DAUD W M A W, SOROUSH M, SHAMIRI A. Mathematical modeling of solid oxide fuel cells:A review[J]. Renewable Sustainable Energy Rev, 2011, 15(4):1893-1917. doi: 10.1016/j.rser.2010.12.011
    [8]
    JABOBSON A J. Materials for solid oxide fuel cells[J]. Chem Mater, 2010, 22(3):660-674. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_5e9b48fcec17359c7adcc7b8dba2452c
    [9]
    CAO D, SUN Y, WANG G. Direct carbon fuel cell:Fundamentals and recent developments[J]. J Power Sources, 2007, 167(2):250-257. doi: 10.1016/j.jpowsour.2007.02.034
    [10]
    RADY A C, GIDDEY S, BADWAL S P S, LADEWIG B P, BHATTACHARYA S. Review of fuels for direct carbon fuel cells[J]. Energy Fuels, 2012, 26(3):1471-1488. doi: 10.1021/ef201694y
    [11]
    GIDDEY S, BADWAL S P S, KULKARNI A, MUMMINGS C. A comprehensive review of direct carbon fuel cell technology[J]. Prog Energy Combust, 2012, 38(3):360-399. doi: 10.1016/j.pecs.2012.01.003
    [12]
    谢永敏, 李江霖, 侯金醒, 吴沛佳, 刘江, 刘庆生.固体氧化物燃料电池直接以焦炭为燃料的电性能[J].燃料化学学报, 2018, 46(10):1168-1174. doi: 10.3969/j.issn.0253-2409.2018.10.003

    XIE Yong-min, LI Jiang-lin, HOU Jin-xing, WU Pei-jia, LIU Jiang, LIU Qing-sheng. Direct use of coke in solid oxide fuel cell[J]. J Fuel Chem Technol, 2018, 46(10):1168-1174. doi: 10.3969/j.issn.0253-2409.2018.10.003
    [13]
    XIE Y M, TANG Y B, LIU J. A verification of the reaction mechanism of direct carbon solid oxide fuel cells[J]. J Solid State Electr, 2013, 17(1):121-127. doi: 10.1007/s10008-012-1866-5
    [14]
    TANG Y, LIU J, SUI J. A novel direct carbon solid oxide fuel cell[J]. Ecs Trans, 2009, 25(2):1109-1114. http://d.old.wanfangdata.com.cn/Conference/8570060
    [15]
    TANG Y B, LIU J. Fueling solid oxide fuel cells with activated carbon[J]. Acta Phys Chim Sin, 2010, 26(5):1191-1194. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201001207847
    [16]
    BAI Y H, LIU Y, TANG Y B, XIE Y M, LIU J. Direct carbon solid oxide fuel cell-a potential high performance battery[J]. Int J Hydrogen Energy, 2011, 36(15):9189-9194. doi: 10.1016/j.ijhydene.2011.04.171
    [17]
    CAI W Z, LIU J, XIE Y, XIAO J, LIU M. An investigation on the kinetics of direct carbon solid oxide fuel cells[J]. J Solid State Electrochem, 2016, 20(8):2207-2216. doi: 10.1007/s10008-016-3216-5
    [18]
    LIU J, ZHOU M Y, ZHANG Y P, LIU Z J, XIE Y M, CAI W Z, YU F Y, ZHOU Q, WANG X Q, NI M, LIU M L. Electrochemical oxidation of carbon at high temperature:Principles and applications[J]. Energy Fuels, 2017, 32(4):4107-4117. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_91595f011edcc3ebcbbdfdebefb4b875
    [19]
    ZHOU Q, CAI W.Z, ZHANG Y P, LIU J, YUAN L L, YU F Y, WANG X Q, LIU M L. Electricity generation from corn cob char though a direct carbon solid oxide fuel cell[J]. Biomass Bioenergy, 2016, 91:250-258. doi: 10.1016/j.biombioe.2016.05.036
    [20]
    DUDEK M, TOMCZYK P, SOCHA R, SKRZYPKIEWCZ M, JEWULSKI J. Biomass fuels for direct carbon fuel cell with solid oxide electrolyte[J]. Int J Electrochem Sci, 2013, 8:3229-3253. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=184723cb7a904adc3edc0b6048d27e39
    [21]
    CAI W, LIU J, LIU P, LIU Z, XU H, CHEN B, LI Y, ZHOU Q, LIU M, NI M. A direct carbon solid oxide fuel cell fueled with char from wheat straw[J]. Int Energy Res, 2018, 110. doi: 10.1002/er.3968/full
    [22]
    CAI W, ZHOU Q, XIE Y, LIU J, LONG G, CHENG S, LIU M. A direct carbon solid oxide fuel cell operated on a plant derived biofuel with natural catalyst[J]. Appl Energy, 2016, 179:1232-1241. doi: 10.1016/j.apenergy.2016.07.068
    [23]
    MUNNINGS C, KULKARNI A, GIDDEY S, BADWALAD S P S, Biomass to power conversion in a direct carbon fuel cell[J]. Int J Hydrogen Energy, 2014, 39(23):12377-12385. doi: 10.1016/j.ijhydene.2014.03.255
    [24]
    余亮, 于方永, 苑莉莉, 蔡位子, 刘江, 杨成浩, 刘美林.银基陶瓷复合电极的电性能及其在固体氧化物燃料电池中的应用[J].物理化学学报, 2016, 32(2):503-509. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201602014

    YU Liang, YU Fang-yong, YUAN Li-li, CAI Wei-zi, LIU Jiang, YANG Cheng-hao, LIU Mei-lin. Electrical performance of Ag-based ceramic composite electrodeds and theire application in solid oxide fuel cells[J]. Acta Phys Chim Sin, 2016, 32(2):503-509. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201602014
    [25]
    KOPUSCINSKI J, RAHMAN M, GUPTA R, MIMS C A, HILL J M. K2CO3 catalyzed CO2 gasification of ash-free coal. Interactions of the catalyst with carbon in N2 and CO2 atmosphere[J]. Fuel, 2014, 117:1181-1189. doi: 10.1016/j.fuel.2013.07.030
    [26]
    PERANDER M, DEMARTINI N, BRINK A, KRAMB J, KARLSTROM O, HEMMING J, MOILANEN A, KONTTINEN J, HUPA M. Catalytic effect of Ca and K on CO2 gasification of spruce wood char[J]. Fuel, 2015, 150:464-472. doi: 10.1016/j.fuel.2015.02.062
    [27]
    JI Y, LU Z, ZHAO X, HE T M, SU W. Study on the properties of Al2O3-doped (ZrO2)0.92 (Y2O3)0.08 electrolyte[J]. Solid State Ionics, 1999, 126(3):277-283. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=752d4b1c36fb2932d570309adba95d7c
    [28]
    TANAKA S, UEMURA T, ISHIZAKI K-I, NAGAYOSHI K, IKENAGA N-O, OHME H, SUZUKI T, YAMASHITA H, AMPO M. CO2 gasification of iron-loaded carbons:Activation of the iron catalyst with CO[J]. Energy Fuels, 1995, 9(1):45-52. doi: 10.1021/ef00049a007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (174) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return