Volume 46 Issue 10
Oct.  2018
Turn off MathJax
Article Contents
QING Shao-jun, HOU Xiao-ning, LIU Ya-jie, WANG Lei, LI Lin-dong, GAO Zhi-xian. Catalytic performance of Cu-Ni-Al spinel for methanol steam reforming to hydrogen[J]. Journal of Fuel Chemistry and Technology, 2018, 46(10): 1210-1217.
Citation: QING Shao-jun, HOU Xiao-ning, LIU Ya-jie, WANG Lei, LI Lin-dong, GAO Zhi-xian. Catalytic performance of Cu-Ni-Al spinel for methanol steam reforming to hydrogen[J]. Journal of Fuel Chemistry and Technology, 2018, 46(10): 1210-1217.

Catalytic performance of Cu-Ni-Al spinel for methanol steam reforming to hydrogen

Funds:

the National Nature Science Foundation of China 21503254

the National Nature Science Foundation of China 21673270

the National Nature Science Foundation of China 21763018

More Information
  • Corresponding author: GAO Zhi-xian, Tel:(0351)4067440, E-mail:gaozx@sxicc.ac.cn
  • Received Date: 2018-07-18
  • Rev Recd Date: 2018-08-22
  • Available Online: 2021-01-23
  • Publish Date: 2018-10-10
  • Using copper hydroxide, nickel acetate and pseudoboehmite as materials, the Cu-Ni-Al spinel catalysts were synthesized by the solid-phase method. The effects of Cu/Ni/Al molar ratio and calcination temperature on specific surface area, phase composition, reduction performance and surface property of Cu-Ni-Al spinel catalysts were characterized by BET, XRD, H2-TPR and XPS. Moreover, the sustained release catalytic performances of Cu-Ni-Al spinel samples for methanol steam reforming were tested. The obtained results indicated that with increasing the calcination temperature, the content of Cu-Ni-Al spinel increased, but the size of spinel particles increased and the specific surface area decreased. Change of the calcination temperature and Cu/Ni/Al molar ratio led to different specific surface area, reduction performance and surface property of Cu-Ni-Al spinel catalysts, thus showing different sustained release catalytic performance. Comparing with those of stoichiometric ratio of Cu/Al=1:2, spinel solid solutions with smaller particle size, higher specific surface area and pore volume, more hardly-reducible spinel and better sustained release catalytic performance were obtained with the nonstoichiometric ratio of Cu/Al=1:3. The results of catalyst evaluation indicated that active copper species were released from Cu-Ni-Al spinel lattice and thus took part in the catalytic action. Among the prepared catalysts, CNA3-1000 catalyst showed the highest catalytic activity and stability.
  • loading
  • [1]
    WANG M Y, WANG Z, GONG X Z, GUO Z C. The intensification technologies to water electrolysis for hydrogen production-A review[J]. Renewable Sustainable Energy Rev, 2014, 29:573-588. doi: 10.1016/j.rser.2013.08.090
    [2]
    BELL T E, TORRENTE-MURCIANO L. H2 Production via ammonia decomposition using non-noble metal catalysts:A review[J]. Top Catal, 2016, 59(15):1438-1457. http://cn.bing.com/academic/profile?id=d078c0d2ae64e434df25f504bc980900&encoded=0&v=paper_preview&mkt=zh-cn
    [3]
    PAL D B, CHAND R, UPADHYAY S N, MISHRA P K. Performance of water gas shift reaction catalysts:A review[J]. Renewable Sustainable Energy Rev, 2018, 93:549-565. doi: 10.1016/j.rser.2018.05.003
    [4]
    SÁ S, SILVA H, BRANDÃO L, SOUSA J M, MENDES A. Catalysts for methanol steam reforming:A review[J]. Appl Catal B:Environ, 2010, 99(1):43-57. https://www.sciencedirect.com/science/article/pii/S0926337310002584
    [5]
    LIN L L, ZHOU W, GAO R, YAO S Y, ZHANG X, XU W Q, ZHENG S J, JIANG Z, YU Q L, LI Y W, SHI C, WEN X D, MA D. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts[J]. Nature, 2017, 544:80-97. doi: 10.1038/nature21672
    [6]
    BAGHERZADEH S B, HAGHIGHI M. Plasma-enhanced comparative hydrothermal and coprecipitation preparation of CuO/ZnO/Al2O3 nanocatalyst used in hydrogen production via methanol steam reforming[J]. Energy Convers Manage, 2017, 142:452-465. doi: 10.1016/j.enconman.2017.03.069
    [7]
    SANCHES S G, HUERTAS FLORES J, PAIS DA SILVA M I. Influence of aging time on the microstructural characteristics of a Cu/ZnO-based catalyst prepared by homogeneous precipitation for use in methanol steam reforming[J]. React Kinet Mech Catal, 2017, 121(2):473-485. doi: 10.1007/s11144-017-1161-7
    [8]
    杨淑倩, 张娜, 贺建平, 张磊, 王宏浩, 白金, 张健, 刘道胜, 杨占旭. Ce的浸渍顺序对Cu/Zn-Al水滑石衍生催化剂用于甲醇水蒸气重整制氢性能的影响[J].燃料化学学报, 2018, 46(4):479-488. doi: 10.3969/j.issn.0253-2409.2018.04.014

    YANG Shu-qian, ZHANG Na, HE Jian-ping, ZHANG Lei, WANG Hong-hao, BAI Jin, ZHANG Jian, LIU Dao-sheng, YANG Zhan-xu. Effect of impregnation sequence of Ce on the performance of Cu/Zn-Al catalysts derived from hydrotalcite precursor in methanol steam reforming[J]. J Fuel Chem Technol, 2018, 46(4):479-488. doi: 10.3969/j.issn.0253-2409.2018.04.014
    [9]
    杨淑倩, 贺建平, 张娜, 隋晓伟, 张磊, 杨占旭.稀土掺杂改性对Cu/ZnAl水滑石衍生催化剂甲醇水蒸气重整制氢性能的影响[J].燃料化学学报, 2018, 46(2):179-188. doi: 10.3969/j.issn.0253-2409.2018.02.007

    YANG Shu-qian, HE Jian-ping, ZHANG Na, SUI Xiao-wei, ZHANG Lei, YANG Zhan-xu. Effect of rare-earth element modification on the performance of Cu/ZnAl catalysts derived from hydrotalcite precursor in methanol steam reforming[J]. J Fuel Chem Technol, 2018, 46(2):179-188. doi: 10.3969/j.issn.0253-2409.2018.02.007
    [10]
    TAHAY P, KHANI Y, JABARI M, BAHADORAN F, SAFARI N. Highly porous monolith/TiO2 supported Cu, Cu-Ni, Ru, and Pt catalysts in methanol steam reforming process for H2 generation[J]. Appl Catal A:Gen, 2018, 554:44-53. doi: 10.1016/j.apcata.2018.01.022
    [11]
    XI H J, HOU X N, LIU Y J, QING S J, GAO Z X. Cu-Al spinel oxide as an efficient catalyst for methanol steam reforming[J]. Angew Chem Int Ed, 2014, 53(44):11886-11889. doi: 10.1002/anie.201405213
    [12]
    LIU Y J, QING S J, HOU X N, QIN F J, WANG X, GAO Z X, XIANG H W. Temperature dependence of Cu-Al spinel formation and its catalytic performance in methanol steam reforming[J]. Catal Sci Technol, 2017, 7(21):5069-5078. doi: 10.1039/C7CY01236E
    [13]
    覃发玠, 刘雅杰, 庆绍军, 侯晓宁, 高志贤.甲醇制氢铜铝尖晶石缓释催化剂的研究-不同铜源合成的影响[J].燃料化学学报, 2017, 45(12):1481-1488. doi: 10.3969/j.issn.0253-2409.2017.12.010

    QIN Fa-jie, LIU Ya-jie, QING Shao-jun, HOU Xiao-ning, GAO Zhi-xian. Cu-Al spinel as a sustained release catalyst for H2 production from methanol steam reforming:Effects of different copper sources[J]. J Fuel Chem Technol, 2017, 45(12):1481-1488. doi: 10.3969/j.issn.0253-2409.2017.12.010
    [14]
    ZHOU R S, SNYDER R L. Structures and transformation mechanisms of theη, γ and θ transition aluminas[J]. Acta Cryst, 1991, 47(5):617-630. doi: 10.1107/S0108768191002719
    [15]
    AREÁN C O, VIÑUELA J S D. Structural study of copper-nickel aluminate (CuxNi1-xAl2O4) spinels[J]. J Solid State Chem, 1985, 60(1):1-5. doi: 10.1016-0022-4596(85)90156-2/
    [16]
    STROHMEIER B R, LEYDEN D E, FIELD R S, HERCULES D M. Surface spectroscopic characterization of Cu/Al2O3 catalysts[J]. J Catal, 1985, 94(2):514-530. doi: 10.1016/0021-9517(85)90216-7
    [17]
    FIGUEIREDO R T, MARTÍNEZ-ARIAS A, GRANADOS M L, FIERRO J L G. Spectroscopic evidence of Cu-Al interactions in Cu-Zn-Al mixed oxide catalysts used in CO hydrogenation[J]. J Catal, 1998, 178(1):146-152. doi: 10.1006/jcat.1998.2106
    [18]
    WAGNER C D, DAVIS L E, ZELLER M V, TAYLOR J A, RAYMOND R H, GALE L H. Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis[J]. Surf Interface Anal, 1981, 3(5):211-225. doi: 10.1002/(ISSN)1096-9918
    [19]
    NG K T, HERCULES D M. Studies of nickel-tungsten-alumina catalysts by X-ray photoelectron spectroscopy[J]. J Phys Chem, 1976, 80(19):2094-2102. doi: 10.1021/j100560a009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (129) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return