Volume 45 Issue 6
Jun.  2017
Turn off MathJax
Article Contents
GU Xiao-min, ZHANG Bin, LIANG Hao-jie, GE Hui-bin, YANG Hui-min, QIN Yong. Pt/HZSM-5 catalyst synthesized by atomic layer deposition for aqueous-phase hydrogenation of levulinic acid to valeric acid[J]. Journal of Fuel Chemistry and Technology, 2017, 45(6): 714-722.
Citation: GU Xiao-min, ZHANG Bin, LIANG Hao-jie, GE Hui-bin, YANG Hui-min, QIN Yong. Pt/HZSM-5 catalyst synthesized by atomic layer deposition for aqueous-phase hydrogenation of levulinic acid to valeric acid[J]. Journal of Fuel Chemistry and Technology, 2017, 45(6): 714-722.

Pt/HZSM-5 catalyst synthesized by atomic layer deposition for aqueous-phase hydrogenation of levulinic acid to valeric acid

Funds:

the National Natural Science Foundation of China 21403271

the National Natural Science Foundation of China 21673269

the Natural Science Foundation of Shanxi Province 2015021046

More Information
  • A Pt/HZSM-5 catalyst was prepared by atomic layer deposition (ALD) for aqueous-phase hydrogenation of levulinic acid (LA) to valeric acid (VA). 5Pt/HZSM-5 produced with 5 cycles of Pt ALD was identified as a highly active and stable bifunctional catalyst, and a high yield of VA (91.4%) was achieved in aqueous solution. A close interaction between Pt and acid sites of HZSM-5 is favor for the selective generation of VA. The microporous structure and the acid sites of HZSM-5 were not changed after Pt ALD, and some Pt nanoparticles were located in the micropore channel of HZSM-5. This reveals that the Pt ALD has the advantage to protect the structure of zeolite. The average particle size of Pt nanoparticles, electric state of surface Pt, and surface acid sites are nearly not changed with the increase of Pt ALD cycle number. However, the ratio of Pt in the pore channel to that out of the pore decreases with the increase of ALD cycle numbers, resulting in a decrease of TOF of VA yield. For comparison, Pt nanoparticles supported on HZSM-5 were also produced by impregnation. But the pore structure of HZSM-5 was damaged, and more micropore were formed by impregnation method for Pt loading. Moreover, it exhibited very low catalytic activity, selectivity of VA, and stability.
  • loading
  • [1]
    RAGAUSKAS A J, WILLIAMS C K, DAVISON B H, BRITOVSEK G, CAIRNEY J, ECKERT C A, FREDERICK W J, HALLETT J P, LEAK D J, LIOTTA C L, MIELENZ J R, MURPHY R, TEMPLER R, TSCHAPLINSK T. The path forward for biofuels and biomaterials[J]. Science, 2006, 311 (5760): 484-489. doi: 10.1126/science.1114736
    [2]
    YUAN J, LI S S, YU L, LIU Y M, CAO Y, HE H Y, FAN K N. Copper-based catalysts for the efficient conversion of carbohydrate biomass into γ-valerolactone in the absence of externally added hydrogen[J]. Energy Environ Sci, 2013, 6 (11): 3308-3313. doi: 10.1039/c3ee40857d
    [3]
    LUO W H, DEKA U, BEALE A M, VAN ECK E R H, BRUIJNINCX P C A, WECKHUYSEN B M. Ruthenium-catalyzed hydrogenation of levulinic acid: Influence of the support and solvent on catalyst selectivity and stability[J]. J Catal, 2013, 301 : 175-186. doi: 10.1016/j.jcat.2013.02.003
    [4]
    LANGE J P, PRICE R, AYOUB P M, LOUIS J, PETRUS L, CLARKE L, GOSSELINK H. Valeric biofuels: A platform of cellulosic transportation fuels[J]. Angew Chem Int Ed, 2010, 49 (26): 4479-4483. doi: 10.1002/anie.201000655
    [5]
    GALLETTI A M R, ANTONETTI C, DE LUISE V, MARTINELLI M. A sustainable process for the production of γ-valerolactone by hydrogenation of biomass-derived levulinic acid[J]. Green Chem, 2012, 14 (3): 688-694. doi: 10.1039/c2gc15872h
    [6]
    PAN T, DENG J, XU Q, XU Y, GUO Q X, FU Y. Catalytic conversion of biomass-derived levulinic acid to valerate esters as oxygenated fuels using supported ruthenium catalysts[J]. Green Chem, 2013, 15 (10): 2967-2974. doi: 10.1039/c3gc40927a
    [7]
    PACE V, HOYOS P, CASTOLDI L, DOMINGUEZ D E MARIA P, ALCANTARA A R. 2-methyltetrahydrofuran (2-MeTHF): A biomass-derived solvent with broad application in organic chemistry[J]. ChemSusChem, 2012, 5 (8): 1369-1379. doi: 10.1002/cssc.v5.8
    [8]
    SERRANO-RUIZ J C, WANG D, DUMESIC J A. Catalytic upgrading of levulinic acid to 5-nonanone[J]. Green Chem, 2010, 12 (4): 574-577. doi: 10.1039/b923907c
    [9]
    YAN K, LAFLEUR T, WU X, CHAI J J, WU G S, XIE X M. Cascade upgrading of γ-valerolactone to biofuels[J]. Chem Commun, 2015, 51 (32): 6984-6987. doi: 10.1039/C5CC01463H
    [10]
    LUO W H, BRUIJNINCX, P C A, WECKHUYSEN B M. Selective, one-pot catalytic conversion of levulinic acid to pentanoic acid over Ru/HZSM-5[J]. J Catal, 2014, 320 : 33-41. doi: 10.1016/j.jcat.2014.09.014
    [11]
    KON K, ONODERA W, SHIMIZU K I. Selective hydrogenation of levulinic acid to valeric acid and valeric biofuels by a Pt/HMFI catalyst[J]. Catal Sci Technol, 2014, 4 (9): 3227-3234. doi: 10.1039/C4CY00504J
    [12]
    SUN P, GAO G, ZHAO Z L, XIA C G, LI F W. Stabilization of cobalt catalysts by embedment for efficient production of valeric biofuel[J]. ACS Catal, 2014, 4 (11): 4136-4142. doi: 10.1021/cs501409s
    [13]
    HUBER G W, IBORRA S, CORMA A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering[J]. Chem Rev, 2006, 106 (9): 4044-4098. doi: 10.1021/cr068360d
    [14]
    ZHANG B, ZHU Y L, DING G Q, ZHENG H Y, LI Y W. Selective conversion of furfuryl alcohol to 1, 2-pentanediol over a Ru/MnOxcatalyst in aqueous phase[J]. Green Chem, 2012, 14 (12): 3402-3409. doi: 10.1039/c2gc36270h
    [15]
    DENDOOVEN J, GORIS B, DEVLOO-CASIER K, LEVRAU E, BIERMANS E, BAKLANOV M R, LUDWIG K F, VOORT P V D, BALS S, DETAVERNIER C.Tuning the pore size of ink-bottle mesopores by atomic layer deposition[J]. Chem Mater, 2012, 24 (11): 1992-1994. doi: 10.1021/cm203754a
    [16]
    LEUS K, DENDOOVEN J, TAHIR N, RAMACHANDRAN R, MELEDINA M, TURNER S, VAN TENDELOO G, GOEMAN J, VAN DER EYCKEN J, DETAVERNIER C, VAN DER VOORT P. Atomic layer deposition of Pt nanoparticles with in the cages of MIL-101: A mild and recyclable hydrogenation catalyst[J]. Nanomaterials, 2016, 6 (3): 45. doi: 10.3390/nano6030045
    [17]
    GEORGE S M, STEVEN M G. Atomic layer deposition: An overview[J]. Chem Rev, 2009, 110 (1): 111-131. doi: 10.1021/cr900056b
    [18]
    GAO Z, DONG M, WANG G Z, SHENG P, WU Z W, YANG H M, ZHANG B, WANG G F, WANG J G, QIN Y. Multiply confined nickel nanocatalysts produced by atomic layer deposition for hydrogenation reactions[J]. Angew Chem Int Ed, 2015, 54 (31): 9006-9010. doi: 10.1002/anie.201503749
    [19]
    LU J L, ELAM J W, STAIR P C. Atomic layer deposition-Sequential self-limiting surface reactions for advanced catalyst "bottom-up" synthesis[J]. Surf Sci Rep, 2016, 71 (2): 410-472. doi: 10.1016/j.surfrep.2016.03.003
    [20]
    LI J W, ZHANG B, CHEN Y, ZHANG J K, YANG H M, ZHANG J W, LU X L, LI G C, QIN Y. Styrene hydrogenation performance of Pt nanoparticles with controlled size prepared by atomic layer deposition[J]. Catal Sci Technol, 2015, 5 (8): 4218-4223. doi: 10.1039/C5CY00598A
    [21]
    ZHANG B, CHEN Y, LI J W, PIPPEL E, YANG H M, GAO Z, QIN Y. High efficiency Cu-ZnO hydrogenation catalyst: The tailoring of Cu-ZnO interface sites by molecular layer deposition[J]. ACS Catal, 2015, 5 (9): 5567-5573. doi: 10.1021/acscatal.5b01266
    [22]
    ZHAN B, GUO X W, LIANG H J, GE H B, GU X M, CHEN S, YANG H M, QIN Y. Tailoring Pt-Fe2O3 interfaces for selective reductive coupling reaction to synthesize imine[J]. ACS Catal, 2016, 6 (10): 6560-6566. doi: 10.1021/acscatal.6b01756
    [23]
    WANG M H, GAO Z, ZHANG B, YANG H M, QIAO Y, CHEN S, GE H B, ZHANG J K, QIN Y. Ultrathin coating of confined Pt nanocatalysts by atomic layer deposition for enhanced catalytic performance in hydrogenation reactions[J]. Chem Eur J, 2016, 22 (25): 8438-8443. doi: 10.1002/chem.v22.25
    [24]
    SUN S H, ZHANG G X, GAUQUELIN N, CHEN N, ZHOU J Q, YANG S Y, CHEN W F, MENG X B, GENG D S, BANIS M N, LI R Y, YE S Y, KNIGHTS S, BOTTON G A, SHAM T K, SUN X. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition[J]. Sci Rep, 2013, 3 : 1775. doi: 10.1038/srep01775
    [25]
    DENDOOVEN J, DEVLOO-CASIER K, IDE M, GRANDFIELD K, DETAVERNIER C. Atomic layer deposition-based tuning of the pore size in mesoporous thin films studied by in situ grazing incidence small angle X-ray scattering[J]. Nanoscale, 2014, 6 (24): 14991-14998. doi: 10.1039/C4NR05049E
    [26]
    DETAVERNIER C, DENDOOVEN J, SREE S P, LUDWIG K F, MARTENS J A. Tailoring nanoporous materials by atomic layer deposition[J]. Chem Soc Rev, 2011, 40 (11): 5242-5253. doi: 10.1039/c1cs15091j
    [27]
    HE Y J, NIVARTHY G S, EDER F, SESHAN K, LERCHER J A. Synthesis, characterization and catalytic activity of the pillared molecular sieve MCM-36[J]. Microporous Mesoporous Mater, 1998, 25 (1): 207-224. http://doc-test.utsp.utwente.nl/73860/
    [28]
    ARICOÁA A S, SHUKLAB A K, KIMC H, PARKC S, MINC M, ANTONUCCIA V. An XPS study on oxidation states of Pt and its alloys with Co and Cr and its relevance to electroreduction of oxygen[J]. Appl Surf Sci, 2001, 172 (1): 33-40. http://cat.inist.fr/?aModele=afficheN&cpsidt=893464
    [29]
    LEI Y, LU J L, LUO X Y, WU T P, DU P, ZHANG X Y, REN Y, WEN J G, MILLER D J, MILLER J T, SUN Y K, ELAM J W, AMINE K. Synthesis of porous carbon supported palladium nanoparticle catalysts by atomic layer deposition: Application for rechargeable lithium-O2 battery[J]. Nano Lett, 2013, 13 (9): 4182-4189. doi: 10.1021/nl401833p
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (93) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return