Volume 46 Issue 2
Feb.  2018
Turn off MathJax
Article Contents
WANG Shao-qing, CHEN Hao, LIU Peng-hua, SHA Yu-ming, LIN Yu-han. HRTEM image changes on heating and thermogravimetric characteristics of barkinite[J]. Journal of Fuel Chemistry and Technology, 2018, 46(2): 138-144.
Citation: WANG Shao-qing, CHEN Hao, LIU Peng-hua, SHA Yu-ming, LIN Yu-han. HRTEM image changes on heating and thermogravimetric characteristics of barkinite[J]. Journal of Fuel Chemistry and Technology, 2018, 46(2): 138-144.

HRTEM image changes on heating and thermogravimetric characteristics of barkinite

Funds:

the National Natural Science Foundation of China 41102097

the National Natural Science Foundation of China 41472132

More Information
  • Corresponding author: WANG Shao-qing, Tel: +86-10-6233-1657, E-mail: wangzq@cumtb.edu.cn
  • Received Date: 2017-08-09
  • Rev Recd Date: 2017-10-17
  • Available Online: 2021-01-23
  • Publish Date: 2018-02-10
  • Barkinite, one of Chinese special maceral, was chosen to study its peculiar thermal characteristics based on thermogravimetric analysis and Rock-eval analysis by comparing vitrinite with bark coal. The changes of chemical structure by heat-treatment of barkinite were discussed by HRTEM. The distribution of functional group of barkinite was studied by Micro-FTIR method. The results show that barkinite has the highest mass loss and the maximum rate of mass loss among these three samples. Barkinite and vitrinite have both orientated layers after temperature above 350℃. With the increasing of temperature, the orientation in aromatic layer is obviously improved and some layers in stacks increase. At the same temperature, for barkinite and vitrinite, three fringes show the greatest abundance, namely, naphthalene, 2×2, and 3×3 fringes, following by 4×4 and 5×5 fringes. Barkinite has a higher abundance of naphthalene than vitrinite and has lower abundances of larger aromatic fringes than vitrinite, for instance, 3×3, 4×4, and 5×5 fringes. With the increasing of temperature, the content of naphthalene in barkinite and vitrinite is increased. Their abundance reaches the highest at 450℃ that is also the temperature of the maximum mass loss rate of barkinite, which indicates that the thermal characteristics of barkinite is related to the abundance of naphthalene in the chemical structure of barkinite.
  • loading
  • [1]
    HSIEH C Y. On lopinite, a new type of coal in China[J]. Bull Geol Soc China, 1933, 12(1/2):469-490. https://www.researchgate.net/publication/229844350_On_Lopinite_a_New_Type_of_Coal_in_China
    [2]
    韩德馨, 任德贻, 王延斌, 金奎励, 毛鹤龄, 秦勇.中国煤岩学[M].徐州:中国矿业大学出版社, 1996, 125-135.

    HAN De-xin, REN De-yi, WANG Yan-bing, JIN Kui-li, MAO He-ling, QIN Yong. Coal Petrology of China[M]. Xuzhou:China University of Mining & Technology Press, 1996.
    [3]
    GUO Y T, RENTON J J, PENN J H. FTIR microspectroscopy of particular liptinite-(lopinite-) rich, late permian coals from Southern China[J]. Int J Coal Geol, 1996, 29(1):187-197. https://www.sciencedirect.com/science/article/pii/0166516295000240
    [4]
    WANG S Q, TANG Y G, SCHOBERT H H, MITCHELL G D, LIAO Y F, LIU Z Z. A thermal behavior study of Chinese coals with high hydrogen content[J]. Int J Coal Geol, 2010, 81:37-44. doi: 10.1016/j.coal.2009.10.012
    [5]
    WANG S Q, TANG Y G, SCHOBERT H H, JIANG D, SUN Y B, GUO Y N, SU Y F, YANG S P. Application and thermal properties of hydrogen-rich bark coal[J]. Fuel, 2015, 162:121-127. doi: 10.1016/j.fuel.2015.09.010
    [6]
    郭亚楠, 唐跃刚, 王绍清, 李薇薇, 贾龙.树皮残植煤显微组分分离及高分辨透射电镜图像分子结构[J].煤炭学报, 2013, 38(6):1019-1024. http://www.doc88.com/p-5945271006379.html

    GUO Yan-an, TANG Yue-gang, WANG Shao-qing, LI Wei-wei, JIA Long. Maceral separation of bark liptobiolite ande molecular structure study through high resolution TEM images[J]. J China Coal Soc, 2013, 38(6):1019-1024. http://www.doc88.com/p-5945271006379.html
    [7]
    GB/T 1558-2001. 烟煤显微组分分类[S].

    GB/T 1558-2001. Classification of macerals for bituminous coal[S].
    [8]
    HOWER J C, SUǍREZ-RUIZ I, MASTALERZ M, COOK A C. The investigation of chemical structure of coal macerals via transmitted-light FT-IR microscopy by X. Sun[J]. Spectrochim Acta Part A, 2007, 67(5):1433-1437. doi: 10.1016/j.saa.2006.11.034
    [9]
    SUN X G. A study of chemical structure in "barkinite" using time-of-flight secondary ion mass spectrometry[J]. Int J Coal Geol, 2001, 47(1):1-8. doi: 10.1016/S0166-5162(01)00008-8
    [10]
    余海洋, 孙旭光, 焦宗福.华南晚二叠世"树皮体"显微傅里叶红外光谱(Micro-FTIR)特征及意义[J].北京大学学报:自然科学版, 2004, 40(6):879-885. http://www.cnki.com.cn/Article/CJFDTOTAL-SYHH201505047.htm

    YU Hai-yang, SUN Xug-uang, JIAO Zong-fu. Characterisistics and implications of micro-FT-IR spectroscopy of barkinite from upper permian coals, South China[J]. Acta Sci Nat Univ Pekin, 2004, 40(6):879-885. http://www.cnki.com.cn/Article/CJFDTOTAL-SYHH201505047.htm
    [11]
    SUN X G. The investigation of chemical structure of coal macerals via transmitted-light FT-IR microspectroscopy[J]. Spectrochim Acta Part A, 2005, 62(1):557-564. https://www.sciencedirect.com/science/article/pii/S1386142506006986
    [12]
    吴俊, 金奎励, 汪昆华, 顾世英.南方树皮煤红外光谱特征及成烃演化规律研究[J].煤田地质与勘探, 1990, (5):29-38. http://www.cqvip.com/QK/94295X/199005/323930.html

    WU Jun, JIN Ku-li, WANG Kun-hua, GU Shi-ying. Infrared spectroscopy characteristics and forming-hydrocarbon evaluation rule for suberain coal in Southern China[J]. Coal Geol Explor, 1990, (5):29-38. http://www.cqvip.com/QK/94295X/199005/323930.html
    [13]
    余海洋, 孙旭光.江西乐平晚二叠世煤成烃机理红外光谱研究[J].光谱学与光谱分析, 2007, 27(5):858-862. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx200705007

    YU Hai-yang, SUN Xu-guang. Research on hydrocarbon generation mechanism of upper permin coals from Leping, Jiangxi, based on ifrared spectroscopy[J]. Spectr Spectr Anal, 2007, 27(5):858-862. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx200705007
    [14]
    WANG S Q, TANG Y G, SCHOBERT H H, JIANG D, GUO X, HUANG F, GUO Y N, SU Y F. Chemical compositional and structural characteristics of late permian bark coals from southern China[J]. Fuel, 2014, 126:116-121. https://www.sciencedirect.com/science/article/pii/S0016236114001598
    [15]
    郭绍辉, 李术元, 秦匡宗.用钌离子催化氧化法研究干酪根及其显微组分的化学结构[J].石油大学学报(自然科学版), 2000, 24(3):54-57. http://www.doc88.com/p-58966651773.html

    GUO Shao-hui, LI Shu-yuan, QIN Kuang-zong. Structual characterization of kerogen and macerals by ruthenium ion catalyzed oxidation[J]. J Univ Pet, China, Ed Nat Sci, 2000, 24(3):54-57. http://www.doc88.com/p-58966651773.html
    [16]
    焦堃, 姚素平, 张科, 胡文瑄.树皮煤的原子力显微镜研究[J].地质论评, 2012, 58(4):775-782. http://d.old.wanfangdata.com.cn/Periodical/dzlp201204018

    JIAO Kun, YAO Su-ping, ZHANG Ke, HU Wen-xuan. An atomic force microscopy study on "barkinite" liptobiolith[J]. Geol Rev, 2012, 58(4):775-782. http://d.old.wanfangdata.com.cn/Periodical/dzlp201204018
    [17]
    WANG S Q, LIU S M, SUN Y B, JIANG D, ZHANG X M. Investigation of coal components of late permian different ranks bark coal using AFM and micro-FTIR[J]. Fuel, 2017, 187:51-57. doi: 10.1016/j.fuel.2016.09.049
    [18]
    SHARAM A, KYOTANI T, TOMITA A. A new quantitative approach for microstructural analysis of coal char using HRTEM images[J]. Fuel, 1999; 78:1203-1212. doi: 10.1016/S0016-2361(99)00046-0
    [19]
    SHARAM A, KYOTANI T, TOMITA A. Direct observation of raw coals in lattice fringe mode using high-resolution transmission electron microscopy[J]. Energy Fuels, 2000, 14:1219-1225. doi: 10.1021/ef0000936
    [20]
    SHARAM A, KYOTANI T, TOMITA A. Quantitive evaluation of structural transformation in raw coals on heat-treatment using HRTEM technique[J]. Fuel, 2001, 80:1467-1473.
    [21]
    MATHEWS J P, JONES A D, PAPPANO P J, HURT R, SCHOBERT H H. New insights into coal structure from the combination of HRTEM and laser desorption ionization mass spectrometry[C]//Proceedings of the 11th Int. Conf. on coal Sci: Exploring the horizons of coal. San Francisco, CA: 2001.
    [22]
    MATHEWS J P, FERNANDEZ-ALSO V, JONES A D, SCHOBERT H H. Determining the molecular weight distribution of pocahontas No. 3 low-volatile bituminous coal utilizing HRTEM and laser desorption ionization mass spectra data[J]. Fuel 2010, 89:1461-1469. https://www.researchgate.net/publication/231426112_Molecular_Size_and_Shape_of_Some_Primary_Degradation_Products_of_a_Bituminous_Coal
    [23]
    MATHEWS J P, SHARAM A. The structure alignment of coal and the analogous case of argonne upper freeport coal[J]. Fuel, 2012, 95:19-24. doi: 10.1016/j.fuel.2011.12.046
    [24]
    VAN NIEKERK D, MATHEWS J P. Molecular representations of Permian-aged vitrinite-rich and inertinite-rich South African coals[J]. Fuel, 2010, 89:73-82. doi: 10.1016/j.fuel.2009.07.020
    [25]
    黄帆. 乐平煤中树皮体的有机地球化学特征研究[D]. 北京: 中国矿业大学(北京), 2015.

    HUANG Fan. Organic geochemical characteristics of barkinite in Leping coal[D]. Beijing: China university of Mining & Technology (Beijing), 2015.
    [26]
    STACH E, MACHKOWSKY M T H, TEICHMVLLER M, TAYLOR G H, CHANDRA D, TEICHMVLLER R. Stach's Textbook of Coal Petrology[M]. Berlin, Stuttgart:Gebrüder Borntraeger, 1982.
    [27]
    WANG S Q, TANG Y G, SCHOBERT H H, GUO Y N, GAO W C, LU X K. FTIR and simultaneous TG/MS/FTIR study of Late Permian coals from Southern China[J]. J Anal Appl Pyrolysis, 2013, 100:75-80. doi: 10.1016/j.jaap.2012.11.021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (78) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return