Volume 45 Issue 3
Mar.  2017
Turn off MathJax
Article Contents
GUAN Gui-qing, ZOU Ming-zhong, FENG Qian, LIN Jian-ping, HUANG Zhi-gao, YAN Gui-yang. Synthesis of Fe3O4/RGO composites and their electrochemical performance[J]. Journal of Fuel Chemistry and Technology, 2017, 45(3): 362-369.
Citation: GUAN Gui-qing, ZOU Ming-zhong, FENG Qian, LIN Jian-ping, HUANG Zhi-gao, YAN Gui-yang. Synthesis of Fe3O4/RGO composites and their electrochemical performance[J]. Journal of Fuel Chemistry and Technology, 2017, 45(3): 362-369.

Synthesis of Fe3O4/RGO composites and their electrochemical performance

Funds:

the National Natural Science Foundation of China 21473096

the National Natural Science Foundation of China 21603112

the Special Project for Fujian Provincial Universities JK2014055

the Research Project of Science and Technology of Ningde City 20140218

the Research Project of Science and Technology of Ningde City 20150169

  • Received Date: 2016-11-28
  • Rev Recd Date: 2017-01-25
  • Available Online: 2021-01-23
  • Publish Date: 2017-03-10
  • With reduced graphene oxide (RGO) as the precursor, Fe3O4/RGO composites were synthesized via a hydrothermal method combined with annealing treatment; the crystalline phase, microstructure and component of Fe3O4/RGO composites were characterized by XRD, SEM, TEM and Raman spectra. As a new type of lithium battery electrode materials, their electrochemical performance and the corresponding performance enhanced mechanism were investigated by the CV and EIS tests. The results indicate that high loading Fe3O4/RGO anodes after charge-discharge 60 cycles show high reversible capacities of 709 mAh/g at 200 mA/g and 479 mAh/g at 600 mA/g, with a very good rate performance. Compared with the Fe3O4 electrodes, Fe3O4/RGO electrodes exhibit better electrochemical performance, which is associated with a synergy between the stable RGO matrix and its good conductivity; such a nano-sized configuration may not only facilitate the electron conduction but also help to maintain the structural integrity of active materials.
  • loading
  • [1]
    POIZOT P, LARUELLE S, GRUGEON S, DUPON L, TARASCON J M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature, 2000, 407(6803):496-499. doi: 10.1038/35035045
    [2]
    TABERNA P L, MITRA S, POIZOT P, SIMON P, TARASCON J M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications[J]. Nat Mater, 2006, 5(7):567-573. doi: 10.1038/nmat1672
    [3]
    LIU H, WANG G X, WANG J Z, WEXLER D. Magnetite/carbon core-shell nanorods as anode materials for lithium-ion batteries[J]. Electrochem Comm, 2008, 10(12):1879-1882. doi: 10.1016/j.elecom.2008.09.036
    [4]
    ZHANG W M, WU X L, HU J S, GUO Y G, WAN L J. Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries[J]. Adv Funct Mater, 2008, 18(24):3941-3946. doi: 10.1002/adfm.v18:24
    [5]
    CHEN J, XU L N, LI W Y, GOU X L.α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications[J]. Adv Mater, 2005, 17(17):582-586.
    [6]
    REDDY M V, YU T, SOW C H, SHEN Z X, LIM CT, RAO S G V, CHOWDARI B V R. α-Fe2O3 nanoflakes as an anode material for Li-ion batteries[J]. Adv Funct Mater, 2007, 17(15):2792-2799. doi: 10.1002/(ISSN)1616-3028
    [7]
    LARCHER D, MASQUELIER C, BONNIN D, CHABRE Y, MASSON V, LERICHE J B, TARASCON J M. Effect of particle size on lithium intercalation into α Fe2O3[J]. J Electrochem Soc, 2003, 150(1):A133-A139. doi: 10.1149/1.1528941
    [8]
    WU Y, WEI Y, WANG J P, JIANG K L, FAN S S. Conformal Fe3O4 sheath on aligned carbon nanotube scaffolds as high performance anodes for lithium ion batteries[J]. Nano Lett, 2013, 13(2):818-823. doi: 10.1021/nl3046409
    [9]
    KANG E, JUNG Y S, CAVANAGH A S, KIM G H, GEORGE S M, DILLON A C, KIM J K, LEE J. Fe3O4 nanoparticles confined in mesocellular carbon foam for high performance anode materials for lithium-ion batteries[J]. Adv Funct Mater, 2011, 21(13):2430-2438. doi: 10.1002/adfm.201002576
    [10]
    BAN C M, WU Z C, GILLASPIE D T, CHEN LE, YAN Y F, BLACKBURN J L, DILLON A C. Nanostructured Fe3O4/SWNT electrode:Binder free and high-rate Li-ion anode[J]. Adv Mater, 2010, 22(20):E145-E149. doi: 10.1002/adma.200903650
    [11]
    NOVOSELOV K S, GEIM A K, MOROZOV S V, JIANG D, KATSNELSON M I, GRIGORIEVA I V, DUBONOS S V, FIRSOV A A. Two-dimensional gas of massless dirac fermions in graphene[J]. Nature, 2005, 438(7065):197-200. doi: 10.1038/nature04233
    [12]
    ANNALISA F, LOS J H, KATSNELSON MIKHAIL I. Intrinsic ripples in graphene[J]. Nat Mater, 2007, 6(11):858-861. doi: 10.1038/nmat2011
    [13]
    YANG S B, FENG X L, WANG L, TANG K, MAIER J, MLLEN K. Graphene-based nanosheets with a sandwich structure[J]. Angew Chem Int Ed, 2010, 49(28):4795-4799. doi: 10.1002/anie.201001634
    [14]
    YOO E J, KIM J, HOSONO E, ZHOU H S, KUDO T, HONMA I. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithiumion batteries[J]. Nano Lett, 2008, 8(8):2277-2279. doi: 10.1021/nl800957b
    [15]
    ZHOU G M, WANG D W, LI F, ZHANG L L, LI N, WU Z S, WEN L, LU G Q (MAX), CHENG H M. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries[J]. Chem Mater, 2010, 22(18):5306-5313. doi: 10.1021/cm101532x
    [16]
    FU C J, ZHAO G G, ZHANG H J, LI S. A Facile route to controllable synthesis of Fe3O4/graphene composites and their application in lithium-ion batteries[J]. Int Electrochem Sci, 2014, 9(1):46-60.
    [17]
    SUBRAMANI B, PARAKANDY M P, SRINIVASAN A, DINESH R, RAGHAVAN G, TATA N R. Efficient reduced graphene oxide grafted porous Fe3O4 composite as a high performance anode material for Li-ion batteries[J]. Chem Phys, 2014, 16(11):5284-5294.
    [18]
    LI, J XZOU M Z, WEN W W, ZHAO Y, LIN Y B, CHEN L Z, LAI H, GUAN L H, HUANG Z G. Spinel MFe2O4 (M=Co, Ni) nanoparticles coated on multi-walled carbon nanotubes as electrocatalysts for Li-O2 batteries[J]. J Mater Chem A, 2014, 2(26):10257-10262. doi: 10.1039/c4ta00960f
    [19]
    ZHAO Y, LI J X, DING Y H, GUAN L H. Enhancing the lithium storage performance of iron oxide composites through partial substitution with Ni2+ or Co2+[J]. J Mater Chem, 2011, 21(21):19101-19105.
    [20]
    ZHAO Y, LI J X, WU C X, GUAN L H. A general strategy for synthesis of metal oxide nanoparticles attached on carbon nanomaterials[J]. Nanoscale Res Lett, 2011, 6:71-75. https://www.researchgate.net/publication/51450487_A_general_strategy_for_synthesis_of_metal_oxide_nanoparticles_attached_on_carbon_nanomaterials
    [21]
    SHEBANOVA O N, PETER L. Raman study of agnetite (Fe3O4):Laser-induced thermal effects and oxidation[J]. J Raman Spectrosc, 2003, 34:845-852. doi: 10.1002/(ISSN)1097-4555
    [22]
    AMODINI M, TANUJA M. Analysis of surface potential and magnetic properties of Fe3O4/graphene oxide nanocomposites[C]. AIP Conference Proceedings, 2016, 1731(1):050010.
    [23]
    FU C J, ZHAO G G, ZHANG H J, LI S. Evaluation and characterization of reduced graphene oxide nanosheets as anode materials for lithium-ion batteries[J]. Int J Electrochem Sci, 2013, 8(5):6269-6280. https://www.researchgate.net/publication/285636501_Evaluation_and_Characterization_of_Reduced_Graphene_Oxide_Nanosheets_as_Anode_Materials_for_Lithium-Ion_Batteries
    [24]
    LI J X, ZOU M Z, ZHAO YI, LIN Y B, LAI H, GUAN L H, HUANG Z G. Coaxial MWNTs@MnO2 confined in conducting PPy for kinetically efficient and long-term lithium ion storage[J]. Electrochim Acta, 2013, 111(6):165-171.
    [25]
    ZOU M Z, WEN W W, LI J X, LIN Y B, LAI H, HUANG Z G. Nano-crystalline FeOOH mixed with SWNT matrix as a superior anode material for lithium batteries[J]. J Energy Chem, 2014, 23(4):513-518. doi: 10.1016/S2095-4956(14)60179-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (266) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return