Volume 48 Issue 10
Oct.  2020
Turn off MathJax
Article Contents
MAO Jing-wen, XU Bin, HU Yi-kang, ZHANG Chang-yuan, MENG Hui-min. Effect of Ce metal modification on the hydrothermal stability of Cu-SAPO-34 catalyst[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1208-1215.
Citation: MAO Jing-wen, XU Bin, HU Yi-kang, ZHANG Chang-yuan, MENG Hui-min. Effect of Ce metal modification on the hydrothermal stability of Cu-SAPO-34 catalyst[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1208-1215.

Effect of Ce metal modification on the hydrothermal stability of Cu-SAPO-34 catalyst

Funds:

National Key Research and Development Program "Development of New Energy-saving and Environmentally Friendly Agricultural Engines 2106YFD0700700

More Information
  • Corresponding author: XU Bin,Tel:13938823801, E-mail:xu64327@163.com
  • Received Date: 2020-09-07
  • Rev Recd Date: 2020-09-21
  • Available Online: 2021-01-23
  • Publish Date: 2020-10-10
  • A series of copper-cerium composite oxide molecular sieve catalysts (Cu-Ce/SAPO-34) were prepared by impregnation method, and the effects of Ce loading on the hydrothermal stability of Cu/SAPO-34 catalyst were discussed. The reasons for the difference in activity and stability of different catalysts were analyzed by XRD, SEM, H2-TPR, XPS, and NH3-TPD. The present study showed that hydrothermal aging at 750 ℃ did not cause the chabazite (CHA) framework of Cu-Ce/SAPO-34 catalyst to collapse, but destroyed part of the pore structure and acid sites, and reduced the crystallinity of the catalyst surface. Hydrothermal aging promoted tensile distortion of the catalyst lattice, causing Cu2+ to migrate to the catalyst surface, and Cu2+ and Ce4+ clustered to form CuO and CeO2, which resulted in the reduction of the Cu active species and the decrease of the oxygen hole concentration of the catalyst. Therefore, the performance of Cu-Ce/SAPO-34 for the selective catalytic reduction of NOx by NH3 (NH3-SCR) decreased. Ce doping could increase the amount of Cu2+ and Cu+ active species on the surface of Cu/SAPO-34 catalyst, reduce Cu species clusters to form CuO, and improve the distribution of active Cu species on the catalyst surface. Increasing the loading of Ce could stabilize the structure of Cu-Ce/SAPO-34 catalyst and maintain the medium and weak acid sites, thereby improving its hydrothermal stability. The results indicated that the Cu/Ce mass ratio of 4:5 had the best hydrothermal stability among the series of Cu-Ce/SAPO-34 catalysts in this study.
  • loading
  • [1]
    KWAK J H, TRAN D, BURTON S D, SZANYI J, LEE J H, PEDEN C H F. Effects of hydrothermal aging on NH3-SCR reaction over Cu/zeolites[J]. J Catal, 2012, 287:203-209. doi: 10.1016/j.jcat.2011.12.025
    [2]
    SCHMIEG S J, OH S H, KIM C H, BROEN D B, LEE J H, PEDEN C H F, KIM D H. Thermal durability of Cu-CHA NH3-SCR catalysts for diesel NOx reduction[J]. Catal Today, 2012, 184:252-161. doi: 10.1016/j.cattod.2011.10.034
    [3]
    KIM Y J, LEE J K, MIN K M, HONG S B, NAM I S, CHO B K. Hydrothermal stability of CuSSZ13 for reducing NOx by NH3[J]. J Catal, 2014, 311:447-457. doi: 10.1016/j.jcat.2013.12.012
    [4]
    DOU B J, LV G, WANG C, HAO Q L, HUI K S. Cerium doped copper/ZSM-5 catalysts used for the selective catalytic reduction of nitrogen oxide with ammonia[J]. Chem Eng J, 2015, 270:549-556. doi: 10.1016/j.cej.2015.02.004
    [5]
    LI X H, ZHAO Y N, ZHAO H W, LIU M K, MA Y H, YONG X, CHEN H, LI Y D. The Cu migration of Cu-SAPO-34 catalyst for ammonia selective catalytic reduction of NOx during high temperature hydrothermal aging treatment[J]. Catal Today, 2019, 327:126-133. doi: 10.1016/j.cattod.2018.05.029
    [6]
    XIANG X, CAO Y, SUN L J, WU P F, CAO L, XU S T, TIAN P, LIU Z M. Improving the low-temperature hydrothermal stability of Cu-SAPO-34 by the addition of Ag for ammonia selective catalytic reduction of NOx[J]. Appl Catal A:Gen, 2018, 551:79-87. doi: 10.1016/j.apcata.2017.12.001
    [7]
    WANG D, JANGJOU Y, LIU Y, SHARMA M K, LUO J Y, LI J H, KAMASAMUDRAM K, EPLING W S. A comparison of hydrothermal aging effects on NH3-SCR of NOx over Cu-SSZ-13 and Cu-SAPO-34 catalysts[J]. Appl Catal B:Environ, 2015, 165:438-445. doi: 10.1016/j.apcatb.2014.10.020
    [8]
    PETKOVICH N D, RUDISILL S G, VENSTROM L J, BOMAN D B, DAVIDSON J H, STEIN A. Control of heterogeneity in nanostructured Ce1-xZrxO2 binary oxides for enhanced thermal stability and water splitting activity[J]. J Phys Chem C, 2011, 115(43):21022-21033. doi: 10.1021/jp2071315
    [9]
    BAIDYA T, GUPTA A, DESHPANDEY P A, MADRAS G, HEGDE M S. High oxygen storage capacity and high rates of CO oxidation and NO reduction catalytic properties of Ce1-xSnxO2 and Ce0.78Sn0.2Pd0.02O2-δ[J]. J Phys Chem C, 2009, 113(10):4059-4068. doi: 10.1021/jp8060569
    [10]
    PANG L, FAN C, SHAO L N, SONG K P, YI J X, CAI X, WANG J, KANG M, LI T. The Ce doping Cu/ZSM-5 as a new superior catalyst to remove NO from diesel engine exhaust[J]. Chem Eng J, 2014, 253:394-401. doi: 10.1016/j.cej.2014.05.090
    [11]
    CAO Y, ZOU S, LAN L, YANG Z Z, XU H D, LIN T, GONG M C, CHEN Y Q. Promotional effect of Ce on Cu-SAPO-34 monolith catalyst for selective catalytic reduction of NOx with ammonia[J]. J Mol Catal A:Chem, 2015, 398:304-311. doi: 10.1016/j.molcata.2014.12.020
    [12]
    胡宜康, 徐斌, 曹智锟, 毛静雯. Cu负载量及改性对Cu/SAPO-34催化剂NH3-SCR性能的影响[J].现代化工, 2020, 40(5):122-127. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdhg202005028

    HU Yi-kang, XU Bin, CAO Zhi-kun, MAO Jing-wen. Effects of Cu loading and modification on the performance of Cu/SAPO-34 catalyst NH3-SCR[J]. Mod Chem Ind, 2020, 40(5):122-127. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdhg202005028
    [13]
    QI G, YANG R T. Selective catalytic oxidation (SCO) of ammonia to nitrogen over Fe/ZSM-5 catalysts[J]. Appl Catal A:Gen, 2005, 287:25-33. doi: 10.1016/j.apcata.2005.03.006
    [14]
    DOU B, LV G, WANG C, HAO Q L, HUI K S. Cerium doped copper/ZSM-5 catalysts used for the selective catalytic reduction of nitrogen oxide with ammonia[J]. Chem Eng J, 2015, 270:549-556. doi: 10.1016/j.cej.2015.02.004
    [15]
    WANG L, LI W, QI G S, WEN D. Location and nature of Cu species in Cu/SAPO-34 for selective catalytic reduction of NO with NH3[J]. J Catal, 2012, 289:21-29. doi: 10.1016/j.jcat.2012.01.012
    [16]
    宿文康. Cu/CHA分子筛选择性催化还原柴油车尾气NOx的机理研究[D].北京: 清华大学, 2016.

    SU Wen-kang. Study on the mechanism of Cu/CHA molecular sieve selective catalytic reduction of NOx in diesel vehicle Exhaust[D]. Beijing: Tsinghua University, 2016.
    [17]
    KWAK J H, TONKYN R, TRAN D, MEI D H, CHO S J, KOVARIK L, LEE J H, PEDEN C H F, SZANYI J. Size-dependent catalytic performance of CuO on γ-Al2O3:NO reduction versus NH3 oxidation[J]. ACS Catal, 2012, 2(7):1432-1440. doi: 10.1021/cs3002463
    [18]
    WANG J, HUANG Y, YU T, ZHOU S C, SHEN M Q, LI W, WANG J Q. The migration of Cu species over Cu-SAPO-34 and its effect on NH3 oxidation at high temperature[J]. Catal Sci Technol, 2014, 4(9):3004-3012. doi: 10.1039/C4CY00451E
    [19]
    YU C L, HUANG B C, DONG L F, CHEN F, LIU X Q. Effect of Pr/Ce addition on the catalytic performance and SO2 resistance of highly dispersed MnOx/SAPO-34 catalyst for NH3-SCR at low temperature[J]. Chem Eng J, 2017, 316(Complete):1059-1068. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d63ab1b113a44055ac32a55a0217e785
    [20]
    WANG L, GAUDET J R, Li W, WANG D. Migration of Cu species in Cu/SAPO-34 during hydrothermal aging[J]. J Catal, 2013, 306(1/2):68-77. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b683e96e99c5909b591d15c35036bb90
    [21]
    ZHAO S, HUANG L M, JIANG B Q, CHENG M, ZHANG J W, HU Y J. Stability of Cu-Mn bimetal catalysts based on different zeolites for NOx removal from diesel engine exhaust[J]. Chin J Catal, 2018, 39(4):800-809. doi: 10.1016/S1872-2067(18)63013-X
    [22]
    GAO F, WALTER E D, KOLLAR M, WANG Y L, SZANYI J, PEDEN C H F. Understanding ammonia selective catalytic reduction kinetics over Cu/SSZ-13 from motion of the Cu ions[J]. J Catal, 2014, 319:1-14. doi: 10.1016/j.jcat.2014.08.010
    [23]
    VENNESTROM P N R, KATERINPOULOU A, TIRUVALAM R R, KUSTOV A, MOSES P G, CONCEPCION P, CORMA A. Migration of Cu ions in SAPO-34 and its impact on selective catalytic reduction of NOx with NH3[J]. ACS Catal, 2013, 3(9):2158-2161. doi: 10.1021/cs400499p
    [24]
    LIU J, LI X Y, ZHAO Q D, ZHANG D K, NDOKOYE P. The selective catalytic reduction of NO with propene over Cu-supported Ti-Ce mixed oxide catalysts:Promotional effect of ceria[J]. J Mol Catal A:Chem, 2013, 378, 115-123. doi: 10.1016/j.molcata.2013.06.005
    [25]
    DUTTA P, PAL S, SEEHRA M S, SHI Y, EYRING E M, ERNST R D. Concentration of Ce3+ and oxygen vacancies in cerium oxide nanoparticles[J]. Chem Mater, 2006, 18(21):5144-5146. doi: 10.1021/cm061580n
    [26]
    VAN KOOTEN W E J, LIANG B, KRIJNSEN H C, OUDSHOORN O L, CALIS H P A, VAN DEN BLEEK C M. Ce-ZSM-5 catalysts for the selective catalytic reduction of NOx in stationary diesel exhaust gas[J]. Appl Catal B:Environ, 1999, 21(3):203-213. doi: 10.1016/S0926-3373(99)00023-5
    [27]
    WANG J, YU T, WANG X Q, QI G S, XUE J J, SHEN M Q, LI W. The influence of silicon on the catalytic properties of Cu/SAPO-34 for NOx reduction by ammonia-SCR[J]. Appl Catal B:Environ, 2012, 127:137-147. doi: 10.1016/j.apcatb.2012.08.016
    [28]
    CAO Y, LAN L, FENG X, YANG Z Z, ZOU S, XU H D, LI Z Q, GONG M C, CHEN Y Q. Cerium promotion on the hydrocarbon resistance of a Cu-SAPO-34 NH3-SCR monolith catalyst[J]. Catal Sci Technol, 2015, 5(9):4511-4521. doi: 10.1039/C5CY00704F
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (213) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return