Volume 45 Issue 5
May  2017
Turn off MathJax
Article Contents
ZHAI Xue-jiao, LI Chuang, DI Xin, YIN Dong-dong, LIANG Chang-hai. Preparation of Cu/MgO catalysts for γ-valerolactone hydrogenation to 1, 4-pentanediol by MOCVD[J]. Journal of Fuel Chemistry and Technology, 2017, 45(5): 537-546.
Citation: ZHAI Xue-jiao, LI Chuang, DI Xin, YIN Dong-dong, LIANG Chang-hai. Preparation of Cu/MgO catalysts for γ-valerolactone hydrogenation to 1, 4-pentanediol by MOCVD[J]. Journal of Fuel Chemistry and Technology, 2017, 45(5): 537-546.

Preparation of Cu/MgO catalysts for γ-valerolactone hydrogenation to 1, 4-pentanediol by MOCVD

Funds:

the National Natural Science Foundation of China 21573031

the National Natural Science Foundation of China 21428301

the Fundamental Research Funds for the Central Universities DUT15ZD106

Program for Excellent Talents in Dalian City 2016RD09

More Information
  • Corresponding author: LIANG Chang-hai, Tel: +86-0411-84986353, Fax: +86-0411-84986353, E-mail: changhai@dlut.edu.cn
  • Received Date: 2017-02-15
  • Rev Recd Date: 2017-04-06
  • Available Online: 2021-01-23
  • Publish Date: 2017-05-10
  • The laminar MgO with high specific area and the organometallic precursor Cu (acac)2 were used for the successful synthesis of Cu/MgO catalysts by metal-organic chemical vapor deposition (MOCVD) method. The copper supported on MgO catalysts were characterized by means of X-ray diffraction, Fourier-transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and N2-physisorption. Characterization results indicated that the organic precursor was successfully deposited onto MgO and the crystal structure of MgO remained intact after deposition. The hydrogenation of γ-valerolactone (γ-GVL) was employed to evaluate the catalytic performance of the Cu/MgO catalysts. It was found that the 18% Cu/MgO catalyst exhibited excellent catalytic activity (90.5%) and selectivity (94.4%) for 1, 4-PDO at 473 K and 10 MPa, and the catalytic activity of Cu/MgO did not diminish significantly after cycling for three times.
  • 本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http://www.sciencedirect.com/science/journal/18725813).
  • loading
  • [1]
    BESSON M, GALLEZOT P, PINEL C. Conversion of biomass into chemicals over metal catalysts[J]. Chem Rev, 2014, 114(3): 1827-1870. doi: 10.1021/cr4002269
    [2]
    AL-SHAAL M G, DZIERBINSKI A, PALKOVITS R. Solvent-free γ-valerolactone hydrogenation to 2-methyltetrahydrofuran catalysed by Ru/C: A reaction network analysis[J]. Green Chem, 2014, 16(3): 1358-1364. doi: 10.1039/C3GC41803K
    [3]
    GEBOERS J A, VAN DE VYVER S, OOMS R, OP DE BEECK B, JACOBS P A, SELS B F. Chemocatalytic conversion of cellulose: Opportunities, advances and pitfalls[J]. Catal Sci Technol, 2011, 1(5): 714-726. doi: 10.1039/c1cy00093d
    [4]
    LIANG D, LIU C W, DENG S P, ZHU Y L, LV C X. Aqueous phase hydrogenolysis of glucose to 1, 2-propanediol over copper catalysts supported by sulfated spherical carbon[J]. Catal Commun, 2014, 54: 108-113. doi: 10.1016/j.catcom.2014.05.027
    [5]
    MAI E F, MACHADO M A, DAVIES T E, LOPEZ-SANCHEZ J A, SILVA V T. Molybdenum carbide nanoparticles within carbon nanotubes as superior catalysts for γ-valerolactone production via levulinic acid hydrogenation[J]. Green Chem, 2014, 16(9): 4092-4097. doi: 10.1039/C4GC00920G
    [6]
    VARKOLU M, VELPULA V, GANJI S, BURRI D R, KAMARAJU S R R. Ni nanoparticles supported on mesoporous silica (2D, 3D) architectures: Highly efficient catalysts for the hydrocyclization of biomass-derived levulinic acid[J]. RSC Adv, 2015, 5(70): 57201-57210. doi: 10.1039/C5RA10857H
    [7]
    WANG J, JAENICKE S, CHUAH G K. Zirconium-Beta zeolite as a robust catalyst for the transformation of levulinic acid to γ-valerolactone via Meerwein-Ponndorf-Verley reduction[J]. RSC Adv, 2014, 4(26): 13481-13489. doi: 10.1039/c4ra01120a
    [8]
    DU X L, BI Q Y, LIU Y M, CAO Y, HE H Y, FAN K N. Tunable copper-catalyzed chemoselective hydrogenolysis of biomass-derived γ-valerolactone into 1, 4-pentanediol or 2-methyltetrahydrofuran[J]. Green Chem, 2012, 14(4): 935-939. doi: 10.1039/c2gc16599f
    [9]
    PACE V, HOYOS P, FERNANDEZ M, SINISTERRA J V, ALCANTARA A R. 2-methyltetrahydrofuran as a suitable green solvent for phthalimide functionalization promoted by supported KF[J]. Green Chem, 2010, 12(8): 1380-1382. doi: 10.1039/c0gc00113a
    [10]
    BOND J Q, ALONSO D M, WEST R M, DUMESIC J A. γ-valerolactone ring-opening and decarboxylation over SiO2/Al2O3 in the presence of water[J]. Langmuir, 2010, 26(21): 16291-16298. doi: 10.1021/la101424a
    [11]
    GEILEN F M, ENGENDAHL B, HOLSCHER M, KLANKERMAYER J, LEITNER W. Selective homogeneous hydrogenation of biogenic carboxylic acids with[Ru (TriPhos) H]+: A mechanistic study[J]. J Am Chem Soc, 2011, 133(36): 14349-14358. doi: 10.1021/ja2034377
    [12]
    TUKACS J M, NOVAK M, DIBO G, MIKA L T. An improved catalytic system for the reduction of levulinic acid to γ-valerolactone[J]. Catal Sci Technol, 2014, 4(9): 2908-2912. doi: 10.1039/C4CY00719K
    [13]
    GEILEN F M, ENGENDAHL B, HARWARDT A, MARQUARDT W, KLANKERMAYER J, LEITNER W. Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system[J]. Angew Chem Int Ed, 2010, 49(32): 5510-5514. doi: 10.1002/anie.201002060
    [14]
    MEHDI H, FABOS V, TUBA R, BODOR A, MIKA L T, HORVATH I T. Integration of homogeneous and heterogeneous catalytic processes for a multi-step conversion of biomass: From sucrose to levulinic acid, γ-valerolactone, 1, 4-pentanediol, 2-methyl-tetrahydrofuran, and alkanes[J]. Top Catal, 2008, 48(1/4): 49-54.
    [15]
    PHANOPOULOS A, WHITE A J P, LONG N J, MILLER P W. Catalytic transformation of levulinic acid to 2-methyl-tetrahydrofuran using ruthenium-N-triphos complexes[J]. ACS Catal, 2015, 5(4): 2500-2512. doi: 10.1021/cs502025t
    [16]
    MIZUGAKI T, NAGATSU Y, TOGO K, MAENO Z, MITSUDOME T, JITSUKAWA K, KANEDA K. Selective hydrogenation of levulinic acid to 1, 4-pentanediol in water using a hydroxyapatite-supported Pt-Mo bimetallic catalyst[J]. Green Chem, 2015, 17(12): 5136-5139. doi: 10.1039/C5GC01878A
    [17]
    BUITRAGO S R, SERRANO R J C, RODRIGUEZ R F, SEPULVEDA E A, DUMESIC J A. Ce promoted Pd-Nb catalysts for γ-valerolactone ring-opening and hydrogenation[J]. Green Chem, 2012, 14(12): 3318-3324. doi: 10.1039/c2gc36161b
    [18]
    LI M, LI G, LI N, WANG A Q, DONG W J, WANG X D, CONG Y. Aqueous phase hydrogenation of levulinic acid to 1, 4-pentanediol[J]. Chem Commun, 2014, 50(12): 1414-1416. doi: 10.1039/c3cc48236g
    [19]
    BERMUDEZ J M, MENENDEZ J A, ROMERO A A, SERRANO E, GARCIA M J, LUQUE R. Continuous flow nanocatalysis: Reaction pathways in the conversion of levulinic acid to valuable chemicals[J]. Green Chem, 2013, 15(10): 2786-2792. doi: 10.1039/c3gc41022f
    [20]
    XU Q, LI X, PAN T, YU C G, DENG J, GUO Q X, FU Y. Supported copper catalysts for highly efficient hydrogenation of biomass-derived levulinic acid and γ-valerolactone[J]. Green Chem, 2016, 18(5): 1287-1294. doi: 10.1039/C5GC01454A
    [21]
    LIU C W, ZHANG C H, LIU K K, WANG Y, FAN G X, SUN S K, XU J, ZHU Y L, LI Y W. Aqueous-phase hydrogenolysis of glucose to value-added chemicals and biofuels: A comparative study of active metals[J]. Biomass Bioenergy, 2015, 72: 189-199. doi: 10.1016/j.biombioe.2014.11.005
    [22]
    MILANOV A P, THIEDE T B, DEVI A, FISCHER R A. Homoleptic gadolinium guanidinate: A single source precursor for metal-organic chemical vapor deposition of gadolinium nitride thin films[J]. J Am Chem Soc, 2009, 131(47): 17062-17063. doi: 10.1021/ja907952g
    [23]
    JIANG M M, ZHANG M M, LI C, WILLIAMS C T, LIANG C H. CVD of Pt (C5H9)2 to synthesize highly dispersed Pt/SBA-15 catalysts for hydrogenation of chloronitrobenzene[J]. Chem Vap Deposition, 2014, 20(4/5/6): 146-151.
    [24]
    ZHAO A Q, CHEN X, GUAN J C, WILLIAMS C T, LIANG C H. The formation mechanism of cobalt silicide on silica from Co (SiCl3)(CO)4 by in situ Fourier transform infrared spectroscopy[J]. Phys Chem Chem Phys, 2011, 13(20): 9432-9438. doi: 10.1039/c1cp20197b
    [25]
    GUAN J C, JIN J H, CHEN X, ZHANG B S, SU D S, LIANG C H. Preparation and formation mechanism of highly dispersed manganese silicide on silica by MOCVD of Mn (CO)5SiCl3[J]. Chem Vap Deposition, 2013, 19(1/3): 68-73.
    [26]
    ZHANG Y, LAM F L Y, HU X J, YAN Z F, SHENG P. Fabrication of copper nanowire encapsulated in the pore channels of SBA-15 by metal organic chemical vapor deposition[J]. J Phys Chem C, 2007, 111(34): 12536-12541. doi: 10.1021/jp073786x
    [27]
    NASIBULIN A G, MOISALA A, BROWN D P, KAUPPINEN E I. Carbon nanotubes and onions from carbon monoxide using Ni (acac)2 and Cu (acac)2 as catalyst precursors[J]. Carbon, 2003, 41(14): 2711-2724. doi: 10.1016/S0008-6223(03)00333-6
    [28]
    MULLER M, LEBEDEV O I, FISCHER R A. Gas-phase loading of[Zn4O (btb)2] (MOF-177) with organometallic CVD-precursors: Inclusion compounds of the type[LnM]a@MOF-177 and the formation of Cu and Pd nanoparticles inside MOF-177[J]. J Mater Chem, 2008, 18(43): 5274-5281. doi: 10.1039/b810989c
    [29]
    BECKER M, D'ALNONCOURT R N, KAHLER K, SEKULIC J, FISCHER R A, MUHLER M. The synthesis of highly loaded Cu/Al2O3and Cu/ZnO/Al2O3 catalysts by the two-step CVD of Cu (Ⅱ) diethylamino-2-propoxide in a fluidized-bed reactor[J]. Chem Vap Deposition, 2010, 16(1/3): 85-92.
    [30]
    NAUMANN D R, BECKER M, SEKULIC J, FISCHER R A, MUHLER M. The preparation of Cu/Al2O3 catalysts via CVD in a fluidized-bed reactor[J]. Surf Coat Technol, 2007, 201(22/23): 9035-9040.
    [31]
    BECKER R, PARALA H, HIPLER F, TKACHENKO O P, KLEMENTIEV K V, GRUNERT W, WILMER H, HINRICHSEN O, MUHLER M, BIRKNER A, WOLL C, SCHAFER S, FISCHER R A. MOCVD-loading of mesoporous siliceous matrices with Cu/ZnO: Supported catalysts for methanol synthesis[J]. Angew Chem Int Ed, 2004, 43(21): 2839-2842. doi: 10.1002/(ISSN)1521-3773
    [32]
    ZHANG G Y, WANG X X, LONG J J, XIE L L, DING Z X, WU L, LI Z H, FU X Z. Deposition cemistry of Cu[OCH (Me) CH2NMe2]2 over mesoporous slica[J]. Chem Mater, 2008, 20(14): 4565-4575. doi: 10.1021/cm7027228
    [33]
    ZHANG G Y, LONG J J, WANG X X, DAI W X, LI Z H, WU L, FU X Z. Controlled synthesis of pure and highly dispersive Cu (Ⅱ), Cu (Ⅰ), and Cu (0)/MCM-41 with Cu[OCHMeCH2NMe2]2/MCM-41 as precursor[J]. New J Chem, 2009, 33(10): 2044-2050. doi: 10.1039/b906352h
    [34]
    LIAN J B, ZHANG C H, WANG P, NG D H L. Template-free hydrothermal synthesis of mesoporous MgO nanostructures and their applications in water treatment[J]. Chem Asian J, 2012, 7(11): 2650-2655. doi: 10.1002/asia.201200665
    [35]
    ZHANG M M, GUAN J C, ZHANG B S, SU D S, WILLIAMS C T, LIANG C H. Chemical vapor deposition of Pd (C3H5)(C5H5) to synthesize Pd@MOF-5 catalysts for suzuki coupling reaction[J]. Catal Lett, 2012, 142(3): 313-318. doi: 10.1007/s10562-012-0767-7
    [36]
    VERTOPRAKHOV V N, KRUPODER S A. Preparation of thin copper films from the vapour phase of volatile copper (Ⅰ) and copper (Ⅱ) derivatives by the CVD method[J]. Russ Chem Rev, 2000, 69(12): 1057-1082. doi: 10.1070/RC2000v069n12ABEH000572
    [37]
    JIANG K, SHENG D, ZHANG Z H, FU J, HOU Z Y, LU X Y. Hydrogenation of levulinic acid to γ-valerolactone in dioxane over mixed MgO-Al2O3 supported Ni catalyst[J]. Catal Today, 2016, 274: 55-59. doi: 10.1016/j.cattod.2016.01.056
    [38]
    HENGNE A M, RODE C V. Cu-ZrO2 nanocomposite catalyst for selective hydrogenation of levulinic acid and its ester to γ-valerolactone[J]. Green Chem, 2012, 14(4): 1064-1072. doi: 10.1039/c2gc16558a
    [39]
    SADABA L, GRANADOS M L, RIISAGER A, TAARNING E. Deactivation of solid catalysts in liquid media: The case of leaching of active sites in biomass conversion reactions[J]. Green Chem, 2015, 17(8): 4133-4145. doi: 10.1039/C5GC00804B
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (68) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return