Volume 45 Issue 7
Jul.  2017
Turn off MathJax
Article Contents
Maliwan Subsadsana, Pitsanuphong Kham-or, Pakpoom Sangdara, Pirom Suwannasom, Chalerm Ruangviriyachai. Synthesis and catalytic performance of bimetallic NiMo-and NiW-ZSM-5/MCM-41 composites for production of liquid biofuels[J]. Journal of Fuel Chemistry and Technology, 2017, 45(7): 805-816.
Citation: Maliwan Subsadsana, Pitsanuphong Kham-or, Pakpoom Sangdara, Pirom Suwannasom, Chalerm Ruangviriyachai. Synthesis and catalytic performance of bimetallic NiMo-and NiW-ZSM-5/MCM-41 composites for production of liquid biofuels[J]. Journal of Fuel Chemistry and Technology, 2017, 45(7): 805-816.

Synthesis and catalytic performance of bimetallic NiMo-and NiW-ZSM-5/MCM-41 composites for production of liquid biofuels

More Information
  • Corresponding author: Chalerm Ruangviriyachai, Tel: +660 8196 49461, Fax: 043202373, E-mail: chal_ru@kku.ac.th
  • Received Date: 2017-01-23
  • Rev Recd Date: 2017-05-02
  • Available Online: 2021-01-23
  • Publish Date: 2017-07-10
  • This work presents a synthesis of bimetallic NiMo and NiW modified ZSM-5/MCM-41 composites and their heterogeneous catalytic conversion of crude palm oil (CPO) to biofuels. The ZSM-5/MCM-41 composites were synthesized through a self-assembly of cetyltrimethylammonium bromide (CTAB) surfactant with silica-alumina from ZSM-5 zeolite, prepared from natural kaolin by the hydrothermal technique. Subsequently, the synthesized composites were deposited with bimetallic NiMo and NiW by impregnation method. The obtained catalysts presented a micro-mesoporous structure, confirmed by XRD, SEM, TEM, EDX, NH3-TPD, XRF and N2 adsorption-desorption measurements. The results of CPO conversion demonstrate that the catalytic activity of the synthesized catalysts decreases in the series of NiMo-ZSM-5/MCM-41 > NiW-ZSM-5/MCM-41 > Ni-ZSM-5/MCM-41 > Mo-ZSM-5/MCM-41 > W-ZSM-5/MCM-41 > NiMo-ZSM-5 > NiW-ZSM-5 > ZSM-5/MCM-41 > ZSM-5 > MCM-41. It was found that the bimetallic NiMo-and NiW-ZSM-5/MCM-41 catalysts give higher yields of liquid hydrocarbons than other catalysts at a given conversion. Types of hydrocarbon in liquid products, identified by simulated distillation gas chromatography-flame ionization detector (SimDis GC-FID), are gasoline (150-200 ℃; C5-12), kerosene (250-300 ℃; C5-20) and diesel (350 ℃; C7-20). Moreover, the conversion of CPO to biofuel products using the NiMo-and NiW-ZSM-5/MCM-41 catalysts offers no statistically significant difference (P > 0.05) at 95% confidence level, evaluated by SPSS analysis.
  • loading
  • [1]
    BOTAS J A, SERRANO D P, GARCIA A, VICENTE J, RAMOS R. Catalytic conversion of rapeseed oil into raw chemicals and fuels over Ni-and Mo-modified nanocrystalline ZSM-5 zeolite[J]. Catal Today, 2012, 195(1):59-70. doi: 10.1016/j.cattod.2012.04.061
    [2]
    HANSHENG L, SHICHAO H, KE M, QIN W, QINGZE J, KENING S. Micro-mesoporous composite molecular sieves H-ZSM-5/MCM-41 for methanol dehydration to dimethyl ether:Effect of SiO2/Al2O3 ratio in H-ZSM-5[J]. Appl Catal A:Gen, 2013, 450(1):152-159. http://www.sciencedirect.com/science/article/pii/S0926860X1200662X
    [3]
    BOTAS J A, SERRANO D P, GARCIA A, RAMOS R. Catalytic conversion of rapeseed oil for the production of raw chemicals, fuels and carbon nanotubes over Ni-modified nanocrystalline and hierarchical ZSM-5[J]. Appl Catal B:Environ, 2014, 145(1):205-215. http://www.sciencedirect.com/science/article/pii/S0926337312005917
    [4]
    HAN D, SUN N, LIU J, LI C, SHAN H, YANG C. Synergistic effect of W and P on ZSM-5 and its catalytic performance in the cracking of heavy oil[J]. J Energy Chem, 2014, 23(4):519-526. doi: 10.1016/S2095-4956(14)60180-7
    [5]
    WANG X, GAO X, DONG M, ZHAO H, HUANG W. Production of gasoline range hydrocarbons from methanol on hierarchical ZSM-5 and Zn/ZSM-5 catalyst prepared with soft second template[J]. J Energy Chem, 2015, 24(4):490-496. doi: 10.1016/j.jechem.2015.06.009
    [6]
    WU G, WU W, WANG X, ZAN W, WANG W, LI C. Nanosized ZSM-5 zeolites:Seed-induced synthesis and the relation between the physicochemical properties and the catalytic performance in the alkylation of naphthalene[J]. Microporous Mesoporous Mater, 2013, 180(1):187-195. http://www.sciencedirect.com/science/article/pii/S1387181112006609
    [7]
    JINDAN N, CUOZHU L, TIANYOU Z, GUOCHANG D, SHENLIN H, LI W. Synthesis and catalytic performance of ZSM-5/MCM-41 zeolites with varying mesopore size by surfactant-directed recrystallization[J]. Catal Lett, 2013, 143(3):267-275. doi: 10.1007/s10562-013-0963-0
    [8]
    QI J, ZHAO T, LI F, SUN G, XU X, MIAO C, WANG H, ZHANG X. Study of cracking of large molecules over a new type meso-ZSM-5 composite zeolite[J]. J Porous Mater, 2010, 17(2):177-184. doi: 10.1007/s10934-009-9278-3
    [9]
    TAUFIQURRAHMI N, MOHAMED A R, BHATIA S. Deactivation and coke combustion studies of nanocrystalline zeolite beta in catalytic cracking of used palm oil[J]. Chem Eng J, 2010, 163(3):413-421. doi: 10.1016/j.cej.2010.07.049
    [10]
    DAO K Y, MEI L F, YA H Y, YI B S, JIA Y C, YI W F. One-step synthesis of hierarchical-structured ZSM-5 zeolite[J]. J Fuel Chem Technol, 2016, 44(11):1363-1369. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18933.shtml
    [11]
    NIKOORAZM M, CHOGHAMARANI A G, NOORI N. Preparation and characterization of functionalized Cu (Ⅱ) schiff base complex on mesoporous MCM-41 and its application as effective catalyst for the oxidation of sulfides and oxidative coupling of thiols[J]. J Porous Mater, 2015, 22(4):877-885. doi: 10.1007/s10934-015-9961-5
    [12]
    OOI Y S, ZAKARIA R, MOHAMED A R, BHATIA S. Synthesis of composite material MCM-41/beta and its catalytic performance in waste used palm oil cracking[J]. Appl Catal A:Gen, 2004, 274(1/2):15-23. http://www.sciencedirect.com/science/article/pii/S0926860X04004454
    [13]
    ZHANG H, LI Y. Preparation and characterization of Beta/MCM-41composite zeolite with a stepwise-distributed pore structure[J]. Powder Technol, 2008, 183(1):73-78. doi: 10.1016/j.powtec.2007.11.013
    [14]
    GUO W, XIONG C, HUANG L, LI Q. Synthesis and characterization of composite molecular sieves comprising zeolite beta with MCM-41 structures[J]. J Mater Chem, 2001, 11(7):1886-1890. doi: 10.1039/b009903l
    [15]
    SONG C M, JIANG J, YAN Z. Synthesis and characterization of MCM-41-type composite materials prepared from ZSM-5 zeolite[J]. J Porous Mater, 2008, 15(2):205-211. doi: 10.1007/s10934-007-9121-7
    [16]
    AHMAD M, FARHANA R, RAMAN A A A, BHARGAVA S K. Synthesis and activity evaluation of heterometallic nano oxides integrated ZSM-5 catalysts for palm oil cracking to produce biogasoline[J]. Energy Convers Manage, 2016, 119(1):352-360. http://www.sciencedirect.com/science/article/pii/S0196890416303193
    [17]
    SANG Y, LIU H, HE S, LI H, JIAO Q, WU Q, SUN K. Catalytic performance of hierarchical H-ZSM-5/MCM-41 for methanol dehydration to dimethyl ether[J]. J Energy Chem, 2013, 22(5):769-777. doi: 10.1016/S2095-4956(13)60102-3
    [18]
    CHANG N, GU Z, WANG Z, LIU Z, HOU X, WANG J. Study of Y zeolite catalysts for coal tar hydro-cracking in supercritical gasoline[J]. J Porous Mater, 2011, 18(5):589-596. doi: 10.1007/s10934-010-9413-1
    [19]
    AKMAZ S, CAGLAYAN P A. Effect of catalyst, temperature, and hydrogen pressure on slurry hydrocracking reactions of naphthalene[J]. Chem Eng Technol, 2015, 38(5):917-930. doi: 10.1002/ceat.v38.5
    [20]
    GUTIERREZ A, ARANDES J M, CASTANO P, OLAZAR M, BARONA A, BILBAO J. Effect of temperature in hydrocracking of light cycle oil on a noble metal-supported catalyst for fuel production[J]. Chem Eng Technol, 2012, 35(4):653-660. doi: 10.1002/ceat.201100382
    [21]
    BENDEZU S, CID R, FIERRO J L G, LOPEZ AGUDO A. Thiophene hydrodesulfurization on sulfided Ni, W and NiW/USY zeolite catalysts:Effect of the preparation method[J]. Appl Catal A:Gen, 2000, 197(1):47-60. doi: 10.1016/S0926-860X(99)00532-3
    [22]
    ZHAO Y, LIN X, LI D. Catalytic hydrocracking of a bitumen -derived asphaltene over NiMo/-Al2O3 at various temperatures[J]. Chem Eng Technol, 2015, 38(1):297-303.
    [23]
    ISHIHARA A, ITOH T, NASU H, HASHIMOTO T, DOIT. Hydrocracking of 1-methylnaphthalene/decahydronaphthalene mixture catalyzed by zeolite-alumina composite supported NiMo catalysts[J]. Fuel Process Technol, 2013, 116(1):222-227. http://www.sciencedirect.com/science/article/pii/S0378382013002324
    [24]
    KUBICKA D, KALUZA L. Deoxygenation of vegetable oils over sulfided Ni, Mo and NiMo catalysts[J]. Appl Catal A:Gen, 2010, 372(2):199-208. doi: 10.1016/j.apcata.2009.10.034
    [25]
    ISHIHARA A, FUKUI N, NASU H, HASHIMOTO T. Hydrocracking of soybean oil using zeolite-alumina composite supported NiMo catalysts[J]. Fuel, 2014, 134(1):611-617. http://www.sciencedirect.com/science/article/pii/S0016236114005602
    [26]
    CHEN H, WANG Q, ZHANG X, WANG L. Effect of support on the NiMo phase and its catalytic hydrodeoxygenation of triglycerides[J]. Fuel, 2015, 159(1):430-435. http://www.sciencedirect.com/science/article/pii/S0016236115007012
    [27]
    SUBSADSANA M, SANGDARA P, RUANGVIRIYACHAI C. Effect of bimetallic NiW modified crystalline ZSM-5 zeolite on catalytic conversion of crude palm oil and identification of biofuel products[J]. Asia-Pac J Chem Eng, 2017, 12(1):147-158. doi: 10.1002/apj.v12.1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (108) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return