Volume 44 Issue 1
Jan.  2016
Turn off MathJax
Article Contents
LEI Zhao, JIANG Jing, ZHU Gang-li, ZHAO Zhi-gang, LING Qiang, CUI Ping. Investigation on the reactivity of isopropanol with lignite-related model compound[J]. Journal of Fuel Chemistry and Technology, 2016, 44(1): 7-14.
Citation: LEI Zhao, JIANG Jing, ZHU Gang-li, ZHAO Zhi-gang, LING Qiang, CUI Ping. Investigation on the reactivity of isopropanol with lignite-related model compound[J]. Journal of Fuel Chemistry and Technology, 2016, 44(1): 7-14.

Investigation on the reactivity of isopropanol with lignite-related model compound

Funds:

The project was supported by the National Natural Science Foundation of China 21176002

The project was supported by the National Natural Science Foundation of China 21476001

More Information
  • Corresponding author: CUI Ping, Tel: +86-555-2311807, Fax: +86-555-2311552, E-mail: mhgcp@126.com
  • Received Date: 2015-08-12
  • Rev Recd Date: 2015-11-17
  • Available Online: 2022-03-23
  • Publish Date: 2016-01-01
  • The isopropanolysis of lignite model compound was investigated using the density functional theory method. Firstly, thermodynamic properties were estimated. Secondly, the method combined the Hirshfeld population and the Fukui function was proposed to obtain the initial reactant configuration. Thirdly, the Linear Synchronous Transit method combined with the Quadratic Synchronous Transit method was developed to calculate the reaction pathway and simultaneously optimize the structures of reactant and product. It was observed that the calculated enthalpy was decreased with increasing temperature. Furthermore, the nucleophilic group was discovered. Moreover, it was proved that the isopropanol was the most active among the common alcohols, indicating that the isopropanolysis was exothermic and nucleophilic.
  • loading
  • [1]
    CHATTERJEE K K. Uses of energy, minerals and changing techniques[M]. New Age International (P) Ltd, 2006.
    [2]
    LI K Z, ZONG M Z, YAN L H. Alkanolysis simulation of lignite-related model compounds using density functional theory[J]. Fuel, 2014, 120: 158-162. doi: 10.1016/j.fuel.2013.12.009
    [3]
    KUZNETSOV N P, SHARYPOV I V, RUBAYLO I A. Study of Kansk-Atchinsk lignite liquefaction in lower aliphatic alcohols using flow periodical function[J]. Fuel, 1988, 67(12): 1685-1690. doi: 10.1016/0016-2361(88)90217-7
    [4]
    KUZNETSOV N P, SHARYPOV I V, BEREGOVTSOVA N G. Kinetics and isotope effect of brown coal liquefaction in ethanol[J]. React Kinet Catal Lett, 1989, 40(1): 59-64. doi: 10.1007/BF02235139
    [5]
    ROSS S D, BLESSING J E. Alcohols as H-donor media in coal conversion. 2. Base-promoted H-donation to coal by methyl alcohol[J]. Fuel, 1979, 58(6): 438-442. doi: 10.1016/0016-2361(79)90085-1
    [6]
    LEI Z, LIU M, SHUI H. Study on the liquefaction of Shengli lignite with NaOH/methanol[J]. Fuel Process Technol, 2010, 91(7): 783-788. doi: 10.1016/j.fuproc.2010.02.014
    [7]
    KUZNETSOV P N, SHARYPOV V I, BEREGOVTSOVA N G. Properties of Kansk-Atchinsk lignite during liquefaction in lower alcohols[J]. Fuel, 1990, 69(7): 911-916. doi: 10.1016/0016-2361(90)90241-H
    [8]
    MONDRAGON F, ITOH H, OUCHI K. Solubility increase of coal by alkylation with various alcohols[J]. Fuel, 1982, 61(11): 1131-1134. doi: 10.1016/0016-2361(82)90198-3
    [9]
    LU H Y, WEI X Y, YU R. Sequential thermal dissolution of huolinguole lignite in methanol and ethanol[J]. Energy Fuels, 2011, 25(6): 2741-2745. doi: 10.1021/ef101734f
    [10]
    ZIEGLER T, AUTSCHBACH J. Theoretical methods of potential use for studies of inorganic reaction mechanisms[J]. Chem Rev, 2005, 105(6): 2695-2722. doi: 10.1021/cr0307188
    [11]
    GRIMME S. Calculation of frequency dependent optical rotation using density functional response theory[J]. Chem Phys Lett, 2001, 339(5/6): 380-388. http://cat.inist.fr/?aModele=afficheN&cpsidt=14058618
    [12]
    IE Y, HIROSE T, NAKAMURA H. Nature of electron transport by pyridine-based tripodal anchors: Potential for robust and conductive single-molecule junctions with gold electrodes[J]. J Am Chem Soc, 2011, 133(9): 3014-3022. doi: 10.1021/ja109577f
    [13]
    GORELSKY S I, LEVER A B P, Electronic structure and spectra of ruthenium diimine complexes by density functional theory and INDO/S. Comparison of the two methods[J]. J Organomet Chem, 2011, 635(1/2): 187-196. https://www.researchgate.net/publication/256789160_Erratum_to_Electronic_structure_and_spectra_of_ruthenium_diimine_complexes_by_density_functional_theory_and_INDOS_Comparison_of_the_two_methods_J_Organomet_Chem_635_2001_187-196
    [14]
    GEERLINGS P, AYERS P W, TORO-LABBÉ A. The woodward-offmann rules reinterpreted by conceptual density functional theory[J]. Acc Chem Res, 2012, 45(5): 683-695. doi: 10.1021/ar200192t
    [15]
    JIANG Z, PAN Q, LI M. Density functional theory study on direct catalytic decomposition of ammonia on Pd (111) surface[J]. Appl Surf Sci, 2013, 292: 494-499. https://www.researchgate.net/publication/261018181_Density_functional_theory_study_on_direct_catalytic_decomposition_of_ammonia_on_Pd_1_1_1_surface
    [16]
    HUANG J, LIU C, REN L, TONG H, LI W, WU D. Studies on pyrolysis mechanism of syringol as lignin model compound by quantum chemistry[J]. J Fuel Chem Technol, 2013, 41(6): 657-666. doi: 10.1016/S1872-5813(13)60031-6
    [17]
    ZHANG X, GAO H, XU H. A density functional theory study of the hydrolysis mechanism of phosphodiester catalyzed by a mononuclear Zn (Ⅱ) complex[J]. J Mol Catal A: Chem, 2012, 368-369: 53-60. http://d.scholar.cnki.net/detail/SJESTEMP_U/SJES14010600488720
    [18]
    SHIM J G., KIM J H, JHON Y H. DFT calculations on the role of base in the reaction between CO2 and monoethanolamine[J]. Ind Eng Chem Res, 2009, 48(4): 2172-2178. doi: 10.1021/ie800684a
    [19]
    AZIZPOUR H, SOTUDEH-GHAREBAGH R, MOSTOUFI N. Characterization of regime transition in fluidized beds at high velocities by analysis of vibration signals[J]. Ind Eng Chem Res, 2012, 51(7): 2855-2863. doi: 10.1021/ie200863y
    [20]
    WANG W J, CAO Y Y. Theoretical study of ethanol partial oxidation for syngas production under cold plasma conditions[J]. J Energy Inst, 2014, 87(2): 89-95. doi: 10.1016/j.joei.2014.03.026
    [21]
    KYUNGBOOK L, HOONYOUNG J, SEUNGPIL J, JONGGEUN C. Improvement of ensemble smoother with clustered covariance for channelized reservoirs[J]. Energy Explor Exploit, 2013, 31(5): 713-726. doi: 10.1260/0144-5987.31.5.713
    [22]
    NAJAFI M, MOOD K H, ZAHEDI M. DFT/B3LYP study of the substituent effect on the reaction enthalpies of the individual steps of single electron transfer-proton transfer and sequential proton loss electron transfer mechanisms of chroman derivatives antioxidant action[J]. Comput Theor Chem, 2011, 969(1/3): 1-12. http://www.sciencedirect.com/science/article/pii/S2210271X11002532
    [23]
    WANG H, SHI X, CHE D. Thermodynamic optimization of the operating parameters for a combined power cycle utilizing low-temperature waste heat and LNG cold energy[J]. Appl Therm Eng, 2013, 59(1/2): 490-497. http://gr.xjtu.edu.cn/upload/23094/Thermodynamic+optimization+of+the+operating+parameters.pdf
    [24]
    ZHOU J, ZONG Z M, CHEN B. The Enrichment and identification of methyl alkanones from thermally soluble shengli lignite[J]. Energy Source Part A, 2013, 35(23): 2218-2224. doi: 10.1080/15567036.2011.652759
    [25]
    PICCOLO A, SPACCINI R, NIEDER R. Sequestration of a biologically labile organic carbon in soils by humified organic matter[J]. Clim Change, 2004, 67(2): 329-343. doi: 10.1007/s10584-004-1822-1.pdf
    [26]
    ADLER E. Lignin chemistry-past, present and future[J]. Wood Sci Technol, 1977, 11(3): 169-218. doi: 10.1007/BF00365615
    [27]
    YU L C, WEI X Y, WANG Y H. Catalytic hydroconversion of extraction residue from Shengli lignite over Fe-S/ZSM-5[J]. Fuel Process Technol, 2014, 126: 131-137. doi: 10.1016/j.fuproc.2014.04.032
    [28]
    JUG K. A new definition of atomic charges in molecules[J]. Theor Chem Acta, 1973, 31(1): 63-73. doi: 10.1007/BF00527439
    [29]
    XU X, WANG Y, CHEN Z, BAI L, ZHANG K, YANG S, ZHANG S. Influence of cooling treatments on char microstructure and reactivity of Shengli brown coal[J]. J Fuel Chem Technol, 2015, 43(1): 1-8. doi: 10.1016/S1872-5813(15)60005-6
    [30]
    LUNDBERG M, BOROWSKI T. Oxoferryl species in mononuclear non-heme iron enzymes: Biosynthesis, properties and reactivity from a theoretical perspective[J]. Coord Chem Rev, 2012, 257(1): 277-289. https://www.researchgate.net/publication/256689404_Oxoferryl_species_in_mononuclear_non-heme_iron_enzymes_Biosynthesis_properties_and_reactivity_from_a_theoretical_perspective
    [31]
    GECE G, BILGIC S. Molecular-level understanding of the inhibition efficiency of some inhibitors of zinc corrosion by quantum chemical approach[J]. Ind Eng Chem Res, 2012, 51(43): 14115-14120. doi: 10.1021/ie302324b
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (52) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return