Volume 47 Issue 12
Dec.  2019
Turn off MathJax
Article Contents
TIAN Ren, WANG Shi-yao, LIAN Chen-shuai, WU Xu, AN Xia, XIE Xian-mei. Synthesis of the hierarchical Fe-substituted porous HBeta zeolite and the exploration of its catalytic performance[J]. Journal of Fuel Chemistry and Technology, 2019, 47(12): 1476-1485.
Citation: TIAN Ren, WANG Shi-yao, LIAN Chen-shuai, WU Xu, AN Xia, XIE Xian-mei. Synthesis of the hierarchical Fe-substituted porous HBeta zeolite and the exploration of its catalytic performance[J]. Journal of Fuel Chemistry and Technology, 2019, 47(12): 1476-1485.

Synthesis of the hierarchical Fe-substituted porous HBeta zeolite and the exploration of its catalytic performance

Funds:

the National Natural Science Foundation of China 51541210

Natural Science Foundation of Shanxi Province 201701D121042

More Information
  • Corresponding author: XIE Xian-mei, Tel/Fax: 86-351-6010554, E-mail: xxmtougao@sina.com
  • Received Date: 2019-09-09
  • Rev Recd Date: 2019-10-25
  • Available Online: 2021-01-23
  • Publish Date: 2019-12-10
  • A series of hierarchical isomorphically Fe-substituted porous beta zeolites (BEAs) was synthesised in a one-step process via soft-template approach (nFe-HBeta, n=Fe/Al) and a series of Ni-based catalysts (10Ni/nFe-HBeta) was prepared by equal volume impregnation. The results showed that the nFe-HBeta zeolites possessed a sheet-like structure with a high crystallinity and numerous porous channels. The introduction of the heterogeneous iron atoms could reduce the degree of order of the mesoporous phase and decrease the size of the zeolite particles and the number of moderate and strong acidic sites. For the 10Ni/nFe-HBeta catalyst, a synergistic effect existed between the framework iron and NiO species, which could enhance the interaction between the active Ni and HBeta support, increase the dispersion of the active metal Ni, and reduce the NiO particle size. In the ethanol steam reforming (ESR) reaction, Fe introduction could inhibit the ethanol dehydration reaction through the shielding of acidic sites and could promote the steam reforming reaction of CO and CH4, effectively improving the H2 selectivity. Among the Fe-containing catalysts, 10Ni/0.15Fe-HBeta showed a H2 selectivity of up to 72.15% and an ethanol conversion rate of 99.6% at 500 ℃, while the amount of coke deposition was only 4.3% after a 12 h reaction.
  • loading
  • [1]
    LI D, ZENG L, LI X Y, WANG X, MA H Y, ASSABUMRUNGRAT S, GONG J L. Ceria-promoted Ni/SBA-15 catalysts for ethanol steam reforming with enhanced activity and resistance to deactivation[J]. Appl Catal B:Environ, 2015, 176:532-541. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9cf678302b79b5c030a95d1a0b5817f0
    [2]
    VIZCAÍNO A J, CARRERO A, CALLES J A. Comparison of ethanol steam reforming using Co and Ni catalysts supported on SBA-15 modified by Ca and Mg[J]. Fuel Process Technol, 2016, 146:99-109. doi: 10.1016/j.fuproc.2016.02.020
    [3]
    李宝茹, 殷雪梅, 吴旭, 安霞, 谢鲜梅. Ni-Fe/蒙脱土催化剂催化乙醇水蒸气重整制氢的研究[J].燃料化学学报, 2016, 44(8):993-1000. doi: 10.3969/j.issn.0253-2409.2016.08.014

    LI Bao-ru, YIN Xue-mei, WU Xu, AN Xia, XIE Xian-mei. Study on hydrogen production by steam reforming of ethanol over Ni-Fe/montmorillonite catalyst[J]. J Fuel Chem Technol, 2016, 44(8):993-1000. doi: 10.3969/j.issn.0253-2409.2016.08.014
    [4]
    GOICOECHEA S, KRALEVA E, SOKOLOV S, SCHNEIDER M, POHL M, KOCKMANN N, EHRICH H. Support effect on structure and performance of Co and Ni catalysts for steam reforming of acetic acid[J]. Appl Catal A:Gen, 2016, 514:182-191. doi: 10.1016/j.apcata.2015.12.025
    [5]
    BILAL M, JACKSON S D. Ethanol steam reforming over Pt/Al2O3 and Rh/Al2O3 catalysts:The effect of impurities on selectivity and catalyst deactivation[J]. Appl Catal A:Gen, 2017, 529:98-107. doi: 10.1016/j.apcata.2016.10.020
    [6]
    WANG Y J, YANG X X, WANG Y H. Catalytic performance of mesoporous MgO supported Ni catalyst in steam reforming of model compounds of biomass fermentation for hydrogen production[J]. In J Hydrogen Energy, 2016, 41(40):17846-17857. doi: 10.1016/j.ijhydene.2016.07.258
    [7]
    LIU B Y, ZHENG L M, ZHU Z H, LI C, XI H X, QIAN Y. Hierarchically structured Beta zeolites with intercrystal mesopores and the improved catalytic properties[J]. Appl Catal A:Gen, 2014, 470:412-419. doi: 10.1016/j.apcata.2013.11.015
    [8]
    LIU B Y, DUAN Q Q, LI C, ZHU Z H, XI H X, QIAN Y. Template synthesis of the hierarchically structured MFI zeolite with nanosheet frameworks and tailored structure[J]. New J Chem, 2014, 38(9):4380-4387. doi: 10.1039/C4NJ00756E
    [9]
    LIU H, ZHANG S, XIE S J, ZHANG W S, XIN W J, LIU S L, XU L Y. Synthesis, characterization, and catalytic performance of hierarchical ZSM-11 zeolite synthesized via dual-template route[J]. Chin J Catal, 2018, 39(1):167-180. doi: 10.1016/S1872-2067(17)62984-X
    [10]
    ZHANG X F, ZHANG K, ZHANG X G, FENG Y, YAO J F. Controlled synthesis of hierarchical beta zeolite through design template to enhance gas-phase beckmann rearrangement performance[J]. Microporous Mesoporous Mater, 2018, 272:202-208. doi: 10.1016/j.micromeso.2018.06.034
    [11]
    PARLETT C M A, AYDIN A, DURNDELL L J, FRATTINI L, ISAACS M A, LEE A F, LIU X T, OLIVI L, TROFIMOVAITE R, WILSON K, WU C F. Tailored mesoporous silica supports for Ni catalysed hydrogen production from ethanol steam reforming[J]. Catal Commun, 2017, 91:76-79. doi: 10.1016/j.catcom.2016.12.021
    [12]
    HOU T F, ZHANG S Y, CHEN Y D, WANG D Z, CAI W J. Hydrogen production from ethanol reforming:Catalysts and reaction mechanism[J]. Renewable Sustainable Energy Rev, 2015, 44:132-148. doi: 10.1016/j.rser.2014.12.023
    [13]
    WANG S Y, HE B, TIAN R, SUN C, DAI R, LI X, WU X, AN X, XIE X M. Ni-hierarchical beta zeolite catalysts were applied to ethanol steam reforming:Effect of sol gel method on loading Ni and the role of hierarchical structure[J]. Mol Catal, 2018, 453:64-73. doi: 10.1016/j.mcat.2018.04.034
    [14]
    KUMAR N, LINDFORS L E, BYGGNINGSBACKA R. Synthesis and characterization of H-ZSM-22, Zn-H-ZSM-22 and Ga-H-ZSM-22 zeolite catalysts and their catalytic activity in the aromatization of n-butane[J]. Appl Catal A:Gen, 1996, 139(1/2):189-199. doi: 10.1016-0926-860X(95)00327-4/
    [15]
    BAECK S H, LEE W Y. Skeletal isomerization of 1-butene to isobutene over Mg-ZSM-22[J]. Appl Catal A:Gen, 1997, 164(1/2):291-301. doi: 10.1016-S0926-860X(97)00180-4/
    [16]
    肖质文, 何红运.双杂原子Fe-V-β沸石的合成, 表征及催化性能[J].催化学报, 2010, 31(6):705-710. http://d.old.wanfangdata.com.cn/Periodical/cuihuaxb201006019

    XIAO Zhi-wen, HE Hong-yun. Synthesis, characterization and catalytic performance of double heteroatom Fe-V-β zeolite[J]. Chin J Catal, 2010, 31(6):705-710. http://d.old.wanfangdata.com.cn/Periodical/cuihuaxb201006019
    [17]
    SONG S, WU G J, DAI W L, GUAN N J, LI L D. Al-free Fe-beta as a robust catalyst for selective reduction of nitric oxide by ammonia[J]. Catal Sci Technol, 2016, 6(23):8325-8335. doi: 10.1039/C6CY02124G
    [18]
    ZHANG Y H, GAO F, WAN H Q, WU C, KONG Y, WU X C, ZHAO B, DONG L, CHEN Y. Synthesis, characterization of bimetallic Ce-Fe-SBA-15 and its catalytic performance in the phenol hydroxylation[J]. Microporous Mesoporous Mater, 2008, 113(1/3):393-401. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=38961b498372f7abd92091b8e02eafce
    [19]
    SIG K Y, AHN W S. Isomorphous substitution of Fe3- in zeolite LTL[J]. Microporous Mater, 1997, 9(3/4):131-140.
    [20]
    INUI T, MATSUDA H, YAMASE O, NAGATA H, FUKUDA K, UKAWA T, MIYAMOTO A. Highly selective synthesis of light olefins from methanol on a novel Fe-silicate[J]. J Catal, 1986, 98(2):491-501. doi: 10.1016-0021-9517(86)90337-4/
    [21]
    LIU S Y, REN J, ZHU S J, ZHANG H K, LV E, XU J, LI Y F. Synthesis and characterization of the Fe-substituted ZSM-22 zeolite catalyst with high n-dodecane isomerization performance[J]. J Catal, 2015, 330:485-496. doi: 10.1016/j.jcat.2015.07.027
    [22]
    JIANG X, SU X F, BAI X F, LI Y Z, YANG L, ZHANG K, ZHANG Y, LIU Y, WU W. Conversion of methanol to light olefins over nanosized[Fe, Al] ZSM-5 zeolites:Influence of Fe incorporated into the framework on the acidity and catalytic performance[J]. Microporous Mesoporous Mater, 2018, 263:243-250. doi: 10.1016/j.micromeso.2017.12.029
    [23]
    KOEKKOEK A J J, XIN H C, YANG Q H, LI C, HENSEN E J M. Hierarchically structured Fe/ZSM-5 as catalysts for the oxidation of benzene to phenol[J]. Microporous Mesoporous Mater, 2011, 145(1/3):172-181. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a11091ac5319de922c99ac61c0d8fad5
    [24]
    YUE Y Y, LIU H Y, YUAN P, YU C Z, BAO X J. One-pot synthesis of hierarchical FeZSM-5 zeolites from natural aluminosilicates for selective catalytic reduction of NO by NH3[J]. Sci Rep-UK, 2015, 5:9270. doi: 10.1038/srep09270
    [25]
    LI J Q, MIAO P J, LI Z, HE T, HAN D Z, WU J L, WANG Z Q, WU J H. Hydrothermal synthesis of nanocrystalline H[Fe, Al] ZSM-5 zeolites for conversion of methanol to gasoline[J]. Energy Convers Manage, 2015, 93:259-266. doi: 10.1016/j.enconman.2015.01.031
    [26]
    孙慧勇, 吴东.杂原子Fe-ZSM-5分子筛的合成及表征[J].燃料化学学报, 1999, 27(1):7-10. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGHG200510002104.htm

    SUN Hui-yong, WU Dong. Synthesis and characterization of Heteroatom Fe-ZSM-5 molecular sieve[J]. J Fuel Chem Technol, 1999, 27(1):7-10. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGHG200510002104.htm
    [27]
    NICHELE V, SIGNORETTO M, PINNA F, GHEDINI E, COMPAGNONI M, ROSSETTI I, CRUCIANI G, MICHELE A D. Bimetallic Ni-Cu catalysts for the low-temperature ethanol steam reforming:Importance of metal-support interactions[J]. Catal Lett, 2015, 145(2):549-558.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (101) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return