Volume 46 Issue 11
Nov.  2018
Turn off MathJax
Article Contents
TAN Qi-hang, CAO Yang, LI Jin. Preparation and characterization of Mo2N/Zr-MCM-41 catalyst and its performance in hydrodeoxygenation of Jatropha curcas oil[J]. Journal of Fuel Chemistry and Technology, 2018, 46(11): 1323-1331.
Citation: TAN Qi-hang, CAO Yang, LI Jin. Preparation and characterization of Mo2N/Zr-MCM-41 catalyst and its performance in hydrodeoxygenation of Jatropha curcas oil[J]. Journal of Fuel Chemistry and Technology, 2018, 46(11): 1323-1331.

Preparation and characterization of Mo2N/Zr-MCM-41 catalyst and its performance in hydrodeoxygenation of Jatropha curcas oil

Funds:

the Hainan Provincial Key Projects ZDYF2018134

More Information
  • Corresponding author: LI Jin, Tel:15607608499, E-mail:316800681@qq.com
  • Received Date: 2018-07-17
  • Rev Recd Date: 2018-09-15
  • Available Online: 2021-01-23
  • Publish Date: 2018-11-10
  • MCM-41 and Zr-MCM-41 with different initial n(Si)/n(Zr) ratios were synthesized by hydrothermal method. Mo2N/Zr-MCM-41 hydrodeoxygenation catalysts were prepared by (NH4)6Mo7O24 carrier co-impregnation, calaination, temperature programing and nitridation, and characterized by XRD, XPS, TEM and Py-FTIR methods. The catalytic performance of Mo2N/Zr-MCM-41 in hydrodeoxygenation of Jatropha curcas oil was evaluated in a high pressure reactor. The results indicate that Zr modified carrier has the same pore structure as pure silicon MCM-41, and the value of L acid and B acid increases. As the active component, the Mo2N has an excellent HDO performance. Under the reaction temperature of 350℃ and the hydrogen pressure of 3.0 MPa, the catalyzed product oil is mainly composed of straight chain alkanes and aromatic compounds, accounting for more than 90% of the product components. The deoxygenation rates of the new catalysts with different n(Si)/n(Zr) ratios are all above 98%, and the content of aromatic compounds is higher than that of straight chain alkanes, which accounts for 72.09% of the total composition. The aromatic compounds are mainly single ring and bicyclic aromatic hydrocarbons with the length of carbon chain of C8-16. After the leprosy oils catalyzed by Mo2N/Zr-MCM-41 are fractionated, it can be prepared to be biofuels.
  • loading
  • [1]
    SENSÖZ S, ANGIN D, YORGUN S. Influence of particle size on the pyrolysis of rapeseed (Brassica napus L. :Fuel properties of bio-oil[J]. Biomass Bioenergy, 2000, 19(4):271-279. doi: 10.1016/S0961-9534(00)00041-6
    [2]
    WANG Y, TAO H, LIU K, WU J, FANG Y. From biomass to advanced bio-fuel by catalytic pyrolysis/hydro-processing:Hydrodeoxygenation of bio-oil derived from biomass catalytic pyrolysis[J]. Bioresour Technol, 2012, 108(108):280-284. http://www.cabdirect.org/abstracts/20123132814.html
    [3]
    HUBER G W, IBORRA S, CORMA A. Synthesis of transportation fuels from biomass:Chemistry, catalysts, and engineering[J]. Chem Rev, 2006, 106(9):4044-4098. doi: 10.1021/cr068360d
    [4]
    YANG Y, LUO H, TONG G, SMITH K J, TYE C T. Hydrodeoxygenation of phenolic model compounds over MoS2 catalysts with different structures[J]. Chin J Chem Eng, 2008, 16(5):733-739. doi: 10.1016/S1004-9541(08)60148-2
    [5]
    SENOL O İ, VILJAVA T R, KRAUSE A O I. Hydrodeoxygenation of aliphatic esters on sulphided NiMo/γ-Al2O3, and CoMo/γ-Al2O3, catalyst:The effect of water[J]. Catal Today, 2005, 106(1):186-189. http://www.sciencedirect.com/science/article/pii/S092058610500502X
    [6]
    COUMANS A E, HENSEN E J M. A model compound (methyl oleate, oleic acid, triolein) study of triglycerides hydrodeoxygenation over alumina-supported NiMo sulfide[J]. Appl Catal B:Environ, 2017, 201:290-301. doi: 10.1016/j.apcatb.2016.08.036
    [7]
    WANG W, LI L, TAN S, Wu K, ZHU G, LIU Y, XU Y, YANG Y. Preparation of NiS2//MoS2, catalysts by two-step hydrothermal method and their enhanced activity for hydrodeoxygenation of p-cresol[J]. Fuel, 2016, 179:1-9. doi: 10.1016/j.fuel.2016.03.068
    [8]
    WAWRZETZ A, PENG B, HRABAR A, JENTYS A, LEMONIDOU A A, LERCHER J A. Towards understanding the bifunctional hydrodeoxygenation and aqueous phase reforming of glycerol[J]. J Catal, 2010, 269(2):411-420. doi: 10.1016/j.jcat.2009.11.027
    [9]
    LEE E H, PARK R S, KIM H, PARK S H, JUNG S C, JEON J K, KIM S C, PARK T K. Hydrodeoxygenation of guaiacol over Pt loaded zeolitic materials[J]. J Ind Eng Chem, 2016, 37:18-21. doi: 10.1016/j.jiec.2016.03.019
    [10]
    DWIATMOKO A A, ZHOU L, KIM I, CHOI J W, SUH D J, HA J M. Hydrodeoxygenation of lignin-derived monomers and lignocellulose pyrolysis oil on the carbon-supported Ru catalysts[J]. Catal Today, 2016, 265:192-198. doi: 10.1016/j.cattod.2015.08.027
    [11]
    MONNIER J, SULIMMA H, DALAI A, CARAVAGGIO G. Hydrodeoxygenation of oleic acid and canola oil over alumina-supported metal nitrides[J]. Appl Catal A:Gen, 2010, 382(2):176-180. doi: 10.1016/j.apcata.2010.04.035
    [12]
    GHAMPSON I T, SEP ÚLVEDA C, GARCIA R, FREDERICK B G, WHEELER M C, ESCALONA N, DESISTO W J. Guaiacol transformation over unsupported molybdenum-based nitride catalysts[J]. Appl Catal A:Gen, 2012, 413(4):78-84. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0225182407/
    [13]
    TOBA M, ABE Y, KURAMOCHI H, OSAKO M, MOCHIZUKI T, YOSHIMURA Y. Hydrodeoxygenation of waste vegetable oil over sulfide catalysts[J]. Catal Today, 2011, 164(1):533-537. doi: 10.1016/j.cattod.2010.11.049
    [14]
    STINNER C, TANG Z, HAOUAS M, WEBER T, PRINS R. Preparation and 31P NMR characterization of nickel phosphides on silica[J]. J Catal, 2002, 208(2):456-466. doi: 10.1006/jcat.2002.3577
    [15]
    BLASCO T, CORMA A, NAVARRO M T, PARIENTE J P. Synthesis, characterization, and catalytic activity of Ti-MCM-41 structures[J]. Cheminform, 2010, 27(3):65-74. http://www.sciencedirect.com/science/article/pii/S0021951785712328
    [16]
    XU J, CHU W, LUO S. Synthesis and characterization of mesoporous V-MCM-41 molecular sieves with good hydrothermal and thermal stability[J]. J Mol Catal A:Chem, 2006, 256(1):48-56. http://www.ingentaconnect.com/content/el/13811169/2006/00000256/00000001/art00010
    [17]
    ZIOLEK M, NOWAK I, KILOS B, SOBCZAK I, DECYK P, TREJDA M, VOLTA J C. Template synthesis and characterisation of MCM-41 mesoporous molecular sieves containing various transition metal elements-TME (Cu, Fe, Nb, V, Mo)[J]. J Phy Chem Solids, 2004, 65(2):571-581. http://www.sciencedirect.com/science/article/pii/S0022369703004463
    [18]
    LIM S, CIUPARU D, YANG Y, DU G, PFEFFERLE L D, HALLER G L. Improved synthesis of highly ordered Co-MCM-41[J]. Microporous Mesoporous Mater, 2007, 101(1):200-206. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0214076662
    [19]
    LAHA S C, MUKHERJEE P, SAINKAR S R, KUMAR R. Cerium containing MCM-41-Type mesoporous materials and their acidic and redox catalytic properties[J]. J Catal, 2002, 207(2):213-223. doi: 10.1006/jcat.2002.3516
    [20]
    CHEN L F, WANG J A, NOREÑA L E, AGUILAR J, NAVARRETE J, SALAS P, MONTOYA J A, ANGEL P D. Synthesis and physicochemical properties of Zr-MCM-41 mesoporous molecular sieves and Pt/H 3 PW 12 O 40/Zr-MCM-41 catalysts[J]. J Solid State Chem, 2007, 180(10):2958-2972. doi: 10.1016/j.jssc.2007.08.023
    [21]
    JIANG T S, ZHAO Q, YIN H B. Synthesis and characterization of Ni-mesoporous molecular sieves with high stability[J]. Inorg Mater, 2007, 43(1):30-34. doi: 10.1134/S0020168507010086
    [22]
    DONG Z, YE F, ZHANG H. Mesoporous structure stability of zirconium-doped mesoporous silica at elevated temperature[J]. Mater Lett, 2009, 63(27):2343-2345. doi: 10.1016/j.matlet.2009.08.003
    [23]
    QIAN Z, ZHOU X, LI Y, LI M, JIANG T, YIN H, CHANG S. Effect of the thermal and hydrothermal treatment on textural properties of Zr-MCM-41 mesoporous molecular sieve[J]. Appl Surf Sci, 2009, 255(12):6397-6403. doi: 10.1016/j.apsusc.2009.02.024
    [24]
    李福祥, 张香娣, 李瑞丰, 谢克昌. Zr-MCM-41的合成及其表征[J].燃料化学学报, 2004, 32(4):471-474. doi: 10.3969/j.issn.0253-2409.2004.04.017

    LI Fu-xiang, ZHANG Xiang-ti, LI Rui-feng, XIE Ke-chang. Synthesis and characterization of mesoporous Zr-MCM-41[J]. J Fuel Chem Technol, 2004, 32(4):471-474. doi: 10.3969/j.issn.0253-2409.2004.04.017
    [25]
    王威燕, 杨运泉, 罗和安, 杨彦松, 胡韬, 刘文英, 何兵, 钦柏豪.复合载体TiO2 -Al2O3的制备及其对Ni-Mo-S负载型催化剂加氢脱氧性能的影响[J].燃料化学学报, 2011, 39(12):924-929. doi: 10.3969/j.issn.0253-2409.2011.12.008

    WANG Wei-yan, YANG Yun-quan, LUO He-an, YANG Yan-song, HU Tao, LIU Wen-ying, HE Bing, QING Bai-hao. Preparation of TiO2-Al2O3 composite support and its performance in catalystic hydrodeoxygenation[J]. J Fuel Chem Technol, 2011, 39(12):924-929. doi: 10.3969/j.issn.0253-2409.2011.12.008
    [26]
    任行涛.烷烃加氢异构化分子筛催化剂的研究[D].天津: 南开大学, 2005. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y804516

    REN Hang-tao. Study on hydrosiomerization of molecular sieve catalysts for alkanes[D]. Tianjin: Nankai University, 2005. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y804516
    [27]
    LI Z, GAO L, ZHENG S. Investigation of the dispersion of MoO3, onto the support of mesoporous silica MCM-41[J]. Appl Cataly A:Gen, 2002, 236(1):163-171. http://www.sciencedirect.com/science/article/pii/S0926860X02003022
    [28]
    肖进兵, 罗有训, 罗根祥, 孙兆林, 辛勤, 李灿.氧化铝负载氮化钼的表面性质及加氢脱氢性能[J].催化学报, 2001, 22(6):571-574. doi: 10.3321/j.issn:0253-9837.2001.06.017

    XIAO Jin-bing, LUO You-xin, LUO Gen-xiang, SUN Zhao-lin, XIN Qin, LI Can. Surface properties and hydrogenation/dehydrogenation performance of alumina-supported molybdenum nitride[J]. Chin J Catal, 2001, 22(6):571-574. doi: 10.3321/j.issn:0253-9837.2001.06.017
    [29]
    刘振林, 孟明, 伏义路, 姜明, 胡天斗, 谢亚宁, 刘涛.γ-Mo2N和分子筛负载的钼氮化物的结构表征[J].物理化学学报, 2001, 17(7):631-635. doi: 10.3866/PKU.WHXB20010712

    LIU Zheng-lin, MENG Ming, FU Yi-lu, JIANG Ming, HU Tian-dou, XIE Ya-ning, LIU Tao. Structure characterization of γ-Mo2N and Mo nitrides supported on zeolites[J]. Acta Phys-Chim Sin, 2001, 17(7):631-635. doi: 10.3866/PKU.WHXB20010712
    [30]
    HADA K, MASATOSHI NAGAI A, OMI S. Characterization and HDS activity of cobalt molybdenum nitrides[J]. J Phys Chem B, 2001, 105(19):217-219. doi: 10.1021/jp002133c
    [31]
    NAGATA T, KOBLMÜLLER G, BIERWAGEN O, GALLINAT C S, SPECK J S. Surface structure and chemical states of a-plane and c-plane InN films[J]. Appl Phy Lett, 2009, 95(13):132104-132104-3. doi: 10.1063/1.3238286
    [32]
    NAGAI M, JUMPEI TAKADA A, OMI S. XPS study of nitrided molybdena/titania catalyst for the hydrodesulfurization of dibenzothiophene[J]. J Phy Chem B, 1999, 103(46):10180-10188. doi: 10.1021/jp991856x
    [33]
    刘维桥, 刘杰, 赵琳, 孙桂大, 吴义志, 张金媛. Mo2N催化剂的研究进展[J].抚顺石油学院学报, 2003, 23(3):18-21. doi: 10.3969/j.issn.1672-6952.2003.03.005

    LIU Wei-qiao, LIU Jie, ZHAO Lin, SUN Gui-da, WU Yi-zhi, ZHANG Jin-yuan. Advance on study of Mo2N catalyst[J]. J Fushun Pet Inst, 2003, 23(3):18-21. doi: 10.3969/j.issn.1672-6952.2003.03.005
    [34]
    罗楠, 曹阳, 李进, 郭威, 赵子为. Ni2P/Zr-MCM-41催化剂的制备及其对麻疯树油加氢脱氧的催化性能[J].燃料化学学报, 2016, 44(1):76-83. doi: 10.3969/j.issn.0253-2409.2016.01.011

    LUO Nan, CAO Yang, LI Jin, GUO Wei, ZHAO Zi-wei. Preparation of Ni2P/Zr-MCM-41 catalyst and its performance in the hydrodeoxygenation of Jatropha curcas oil[J]. J Fuel Chem Technol, 2016, 44(1):76-83. doi: 10.3969/j.issn.0253-2409.2016.01.011
    [35]
    杨树武, 徐江. SiO2负载的氮化钼催化剂的合成与表征[J].催化学报, 1998, V19(2):125-129. doi: 10.3321/j.issn:0253-9837.1998.02.006

    YANG Shu-wu, XU Jiang. Synthesis and characterization of SiO2 supported molybdenum nitride hydrodenitro genation catalysts[J]. Chin J Catal, 1998, V19(2):125-129. doi: 10.3321/j.issn:0253-9837.1998.02.006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (113) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return