Volume 48 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
TAO Jia-yi, ZHANG Jian-li, FAN Su-bing, MA Qing-xiang, GAO Xin-hua, ZHAO Tian-sheng. Effects of boron modification on the activity of HZSM-5 toward MTP[J]. Journal of Fuel Chemistry and Technology, 2020, 48(9): 1105-1111.
Citation: TAO Jia-yi, ZHANG Jian-li, FAN Su-bing, MA Qing-xiang, GAO Xin-hua, ZHAO Tian-sheng. Effects of boron modification on the activity of HZSM-5 toward MTP[J]. Journal of Fuel Chemistry and Technology, 2020, 48(9): 1105-1111.

Effects of boron modification on the activity of HZSM-5 toward MTP

Funds:

East-West Cooperation Project, Key R & D Plan of Nignxia 2017BY063

National Natural Science Foundation of China 21563024

More Information
  • Corresponding author: ZHAO Tian-sheng, E-mail:zhaots@nxu.edu.cn
  • Received Date: 2020-04-30
  • Rev Recd Date: 2020-07-07
  • Available Online: 2021-01-23
  • Publish Date: 2020-09-10
  • BHZSM-5 zeolite was synthesized using one-step hydrothermal crystallization by changing SiO2/Al2O3 (100 and 200) with B2O3/Al2O3=1. The catalytic activity for methanol to propylene (MTP) was studied. Boron modification lead to increased propylene selectivity and improved stability. Boron modification reduced the amount of the strong Brønsted (B) acid sites. Subjected to hydrothermal treatment at 480 ℃, BHZSM-5 remained 50% of the amount of the strong B acid sites, higher than that of HZSM-5, showing enhanced hydrothermal stability. The distribution of the framework Al also changed. The Al located in the straight and the sinusoidal channels of the ZSM-5 crystal was stable whereas those at the channel intersections was easy to be removed, favoring the MTP activity via the olefin cycle mechanism. As the hydrothermal treatment velocity was increased from 1 h-1 to 9 h-1, the B acid sites amount of the BHZSM-5 further decreased and more Al at the intersections was removed.
  • loading
  • [1]
    TARACH K A, MARTINEZ-TRIGUERO J, REY F, GÓRA-MAREK K. Hydrothermal stability and catalytic performance of desilicated highly siliceous zeolites ZSM-5[J]. J Catal, 2016, 339:256-269. doi: 10.1016/j.jcat.2016.04.023
    [2]
    BENITO P L, GAYUBO A G, AGUAYO A T, OLAZAR M, BILBAO J. Deposition and characteristics of coke over a H-ZSM-5 zeolite-based catalyst in the MTG process[J]. Ind Eng Chem Res, 1996, 35:3991-3998. doi: 10.1021/ie950462z
    [3]
    温鹏宇, 梅长松, 刘红星, 杨为民, 陈庆龄. ZSM-5硅铝比对甲醇制丙烯反应产物的影响[J].化学反应工程与工艺, 2007, 23(5):385-390. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxfygcygy200705001

    WEN Peng-yu, MEI Chang-song, LIU Hong-xing, YANG Wei-min, CHEN Qing-ling. Effect of Si/Al ratio in ZSM-5 on the selectivity of products for methanol conversion to propylene[J]. Chem React Eng Technol, 2007, 23(5):385-390. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxfygcygy200705001
    [4]
    ZHAO T S, TAKEMOTO T, TSUBAKI N. Direct synthesis of propylene and light olefins from dimethyl ether catalyzed by modified H-ZSM-5[J]. Catal Commun, 2006, 7(9):647-650. doi: 10.1016/j.catcom.2005.11.009
    [5]
    刘文丽. HZSM-5催化剂酸性调变对甲醇制烯烃反应性能的影响研究[D].银川: 宁夏大学, 2017.

    LIU Wen-li. Study on the acidity adjustment of HZSM-5[D]. Yinchuan: Ningxia University, 2017.
    [6]
    PARK S, BILIGETU T, WANG Y, NISHITOBA T, KONDO J N, YOKOI T. Acidic and catalytic properties of ZSM-5 zeolites with different Al distributions[J]. Catal Today, 2018, 303:64-70. doi: 10.1016/j.cattod.2017.07.022
    [7]
    BILIGETU T, WANG Y, NISHITOBA T, OTOMO R, PARK S, MOCHIZUKI H, KONDO J N, TATSUMI T, YOKOI T. Al distribution and catalytic performance of ZSM-5 zeolites synthesized with various alcohols[J]. J Catal, 2017, 353:1-10. doi: 10.1016/j.jcat.2017.06.026
    [8]
    HOLZINGER J, BEATO P, LUNDEGAARD L F, SKIBSTED J. Distribution of aluminum over the tetrahedral sites in ZSM-5 zeolites and their evolution after steam treatment[J]. J Phys Chem C, 2018, 122(27):15595-15613. doi: 10.1021/acs.jpcc.8b05277
    [9]
    SANHOOB M A, MURAZA S, SHAFEI E N, YOKOI T, CHOI K H. The steam catalytic cracking of heavy naphtha (C12) to high octane naphtha over B-MFI zeolite[J]. Appl Catal B. Environ, 2017, 210:432-443. doi: 10.1016/j.apcatb.2017.04.001
    [10]
    YANG Y S, SUN C, DU J M, YUE Y H, HUA W M, ZHANG C L, SHEN W, XU H L. The synthesis of endurable B-Al-ZSM-5 catalyst with tunable acidity for methanol to propylene reaction[J]. Catal Commun, 2012, 24:44-47. doi: 10.1016/j.catcom.2012.03.013
    [11]
    LI C G, VIDAL-MOYA A, MIGUEL P J, DEDECEK J, BORONAT M, CORMA A. Selectively introducing acid sites in different confined positions in ZSM-5 and its catalytic implications[J]. ACS Catal, 2018, 8(8):7688-7697. doi: 10.1021/acscatal.8b02112
    [12]
    EMEIS C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. J Catal, 1993, 141:347-354. doi: 10.1006/jcat.1993.1145
    [13]
    HU Z J, ZHANG H B, WANG L, ZHANG H X, ZHANG Y H, XU H L, SHEN W, TANG Y. Highly stable boron-modified hierarchical nanocrystalline ZSM-5 zeolite for the methanol to propylene reaction[J]. Catal Sci Technol, 2014, 4:2981-2985. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=254505ade0d94a3000dfc23bc1551933
    [14]
    DING C H, WANG X S, GUO X W, ZHANG S G. Characterization and catalytic alkylation of hydrothermally dealuminated nanoscale ZSM-5 zeolite catalyst[J]. Catal Commun, 2007, 9:487-493. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c1924aee810170c226b98290aa322b16
    [15]
    周振垒, 李啄, 王博, 彭伟才, 李建青, 吴晋沪. ZSM-5的水热改性及其在合成气经二甲醚制汽油中的应用[J].燃料化学学报, 2013, 41(11):1349-1355. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201311011

    ZHOU Zhen-lei, LI Zhou, WANG Bo, PENG Wei-cai, LI Jian-qing, WU Jin-hu. Hydrothermal treatment of ZSM-5 and its application in syngas via DME[J]. J Fuel Chem Technol, 2013, 41(11):1349-1355. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201311011
    [16]
    KANELLOPOULOS J, YNGER A, SCHWIEGER W, FREUDE D. Catalytic and multinuclear MAS NMR studies of a thermally treated zeolite ZSM-5[J]. J Catal, 2006, 237:416-425. doi: 10.1016/j.jcat.2005.11.030
    [17]
    CHEN T H, WOUTERS B H, GROBET P J. Aluminium coordination in zeolite mordenite by27Al multiple quantum MAS NMR spectroscopy[J]. Eur J Inorg Chem, 2000, 2:281-285. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3ff9d8f3ee73e3d0b250f1b5074d796f
    [18]
    YOKOI T, MOCHIZUKI H, NAMBA S, KONDO J N, TATSUMI T. Control of the Al distribution in the framework of ZSM-5 zeolite and its evaluation by solid-state NMR technique and catalytic properties[J]. J Phys Chem C, 2015, 119:15303-15315. doi: 10.1021/acs.jpcc.5b03289
    [19]
    FU T J, MA Z, WANG Y J, SHAO J, MA Q, ZHANG C M, CUI L P, LI Z. Si/Al ratio induced structure evolution during desilication-recrystallization of silicalite-1 to synthesis nano-ZSM-5 catalyst for MTH reaction[J]. Fuel Process Technol, 2019, 194:106122. doi: 10.1016/j.fuproc.2019.106122
    [20]
    LIU H, WANG H, XING A H, CHENG J H. Effect of Al distribution in MFI framework channels on the catalytic performance of ethane and ethylene aromatization[J]. J Phys Chem C, 2015, 119(27):15303-15315. doi: 10.1021/acs.jpcc.5b03289
    [21]
    ERICHSEN M W, SVELLE S, OLSBYE U. The influence of catalyst acid strength on the methanol to hydrocarbons (MTH) reaction[J]. Catal Today, 2013, 215:216-223. doi: 10.1016/j.cattod.2013.03.017
    [22]
    LIANG T Y, CHEN J L, QIN Z F, LI J F, WANG P F, WANG S, WANG G F, DONG M, FAN W B, WANG J G. Conversion of methanol to olefins over H-ZSM-5 zeolite:Reaction pathway is related to the framework aluminum siting[J]. ACS Catal, 2016, 6:7311-7325. doi: 10.1021/acscatal.6b01771
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (104) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return