Volume 45 Issue 5
May  2017
Turn off MathJax
Article Contents
Napha Sudachom, Chompunuch Warakulwit, Chaiwat Prapainainar, Thongthai Witoon, Paweena Prapainainar. One step NaBH4 reduction of Pt-Ru-Ni catalysts on different types of carbon supports for direct ethanol fuel cells: Synthesis and characterization[J]. Journal of Fuel Chemistry and Technology, 2017, 45(5): 596-607.
Citation: Napha Sudachom, Chompunuch Warakulwit, Chaiwat Prapainainar, Thongthai Witoon, Paweena Prapainainar. One step NaBH4 reduction of Pt-Ru-Ni catalysts on different types of carbon supports for direct ethanol fuel cells: Synthesis and characterization[J]. Journal of Fuel Chemistry and Technology, 2017, 45(5): 596-607.

One step NaBH4 reduction of Pt-Ru-Ni catalysts on different types of carbon supports for direct ethanol fuel cells: Synthesis and characterization

Funds:

the Institutional Research Grant IRG598004

More Information
  • Corresponding author: Paweena Prapainainar, Tel: +66 2579 2083, Fax: +66 2561 4621, E-mail: fengpwn@ku.ac.th
  • Received Date: 2016-12-21
  • Rev Recd Date: 2017-03-09
  • Available Online: 2021-01-23
  • Publish Date: 2017-05-10
  • The ternary catalyst Pt75Ru5Ni20 was conducted on various types of carbon supports including functionalized Vulcan XC-72R (f-CB), functionalized multi-walled carbon nanotubes (f-MWCNT), and mesoporous carbon (PC-Zn-succinic) by sodium borohydride chemical reduction method to improve the ethanol electrooxidation reaction (EOR) for direct ethanol fuel cell (DEFC). It was found that the particle size of the metals on f-MWCNT was 5.20 nm with good particle dispersion. The alloy formation of ternary catalyst was confirmed by XRD and more clearly described by SEM element mapping, which was relevant to the efficiency of the catalysts. Moreover, the mechanism of ethanol electrooxidation reaction based on the surface reaction was more understanding. The activity and stability for ethanol electrooxidation reaction (EOR) were investigated using cyclic voltammetry and chronoamperometry, respectively. The highest activity and stability for EOR were observed from Pt75Ru5Ni20/f-MWCNT due to a good metal-carbon interaction. Ru and Ni presented in Pt-Ru-Ni alloy improved the activity and stability of ternary catalysts for EOR. Moreover, the reduction of Pt content in ternary catalyst led to the catalyst cost deduction in DEFC.
  • 本文的英文电子版由Elsevier出版社在ScienceDirect上出版 (http://www.sciencedirect.com/science/journal/18725813).
  • loading
  • [1]
    WANG Z B, YIN G P, ZHANG J, SUN Y C, SHI P F. Investigation of ethanol electrooxidation on a Pt-Ru-Ni/C catalyst for a direct ethanol fuel cell[J]. J Power Sources, 2006, 160(1):37-43. doi: 10.1016/j.jpowsour.2006.01.021
    [2]
    HASSAN H B. Electrodeposited Pt and Pt-Sn nanoparticles on Ti as anodes for direct methanol fuel cells[J]. J Fuel Chem Technol, 2009, 37(3):346-354. doi: 10.1016/S1872-5813(09)60024-4
    [3]
    PARREIRA L S, DA SILVA J C M, D'VILLA-SILVA M, SIMÕES F C, GARCIA S, GAUBEUR I, CORDEIRO M A L, LEITE E R, DOS SANTOS M C. PtSnNi/C nanoparticle electrocatalysts for the ethanol oxidation reaction:Ni stability study[J]. Electrochim Acta, 2013, 96:243-252. doi: 10.1016/j.electacta.2013.02.054
    [4]
    NETO A O, DIAS R R, TUSI M M, LINARDI M, SPINACÉ E V. Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process[J]. J Power Sources, 2007, 166(1):87-91. doi: 10.1016/j.jpowsour.2006.12.088
    [5]
    RIBADENEIRA E, HOYOS B A. Evaluation of Pt-Ru-Ni and Pt-Sn-Ni catalysts as anodes in direct ethanol fuel cells[J]. J Power Sources, 2008, 180(1):238-242. doi: 10.1016/j.jpowsour.2008.01.084
    [6]
    WANG W, WANG R, WANG H, JI S, KEY J, LI X, LEI Z. An advantageous method for methanol oxidation:Design and fabrication of a nanoporous PtRuNi trimetallic electrocatalyst[J]. J Phys Chem C, 2011, 196(22):9346-9351. https://www.researchgate.net/publication/251589550_An_advantageous_method_for_methanol_oxidation_Design_and_fabrication_of_a_nanoporous_PtRuNi_trimetallic_electrocatalyst
    [7]
    SOUNDARARAJAN D, PARK J H, KIM K H, KO J M. Pt-Ni alloy nanoparticles supported on CNF as catalyst for direct ethanol fuel cells[J]. Curr Appl Phys, 2012, 12(3):854-859. doi: 10.1016/j.cap.2011.11.020
    [8]
    BEYHAN S, LÉGER J-M, KADIRGAN F. Understanding the influence of Ni, Co, Rh and Pd addition to PtSn/C catalyst for the oxidation of ethanol by in situ Fourier transform infrared spectroscopy[J]. Appl Catal B:Environ, 2014, 144:66-74. doi: 10.1016/j.apcatb.2013.07.020
    [9]
    SUDACHOM N, WARAKULWIT C, PARPAINAINAR P. The effect of ternary catalyst atomic ratios (PtRuSn/C and PtRuNi/C) on ethanol electrooxidation for direct ethanol fuel cell[J]. Key Eng Mater, 2015, 659:247-251. doi: 10.4028/www.scientific.net/KEM.659
    [10]
    ZHOU Z, WANG S, ZHOU W, WANG G, JIANG L, LI W, SONG S, LIU J, SUN G, XIN Q. Novel synthesis of highly active Pt/C cathode electrocatalyst for direct methanol fuel cell[J]. Chem Commun, 2003, (3):394-395. doi: 10.1039/b211075j
    [11]
    MARTÍNEZ-HUERTA M V, ROJAS S, GÓMEZ DE LA FUENTE J L, TERREROS P, PEÑA M A, FIERRO J L G. Effect of Ni addition over PtRu/C based electrocatalysts for fuel cell applications[J]. Appl Catal B:Environ, 2006, 69(1/2):75-84. http://www.academia.edu/3846053/Effect_of_Ni_addition_over_PtRu_C_based_electrocatalysts_for_fuel_cell_applications
    [12]
    LIU Z, GUO B, HONG L, LIM T H. Microwave heated polyol synthesis of carbon-supported PtSn nanoparticles for methanol electrooxidation[J]. Electrochem Commun, 2006, 8(1):83-90. doi: 10.1016/j.elecom.2005.10.019
    [13]
    LIU C W, CHANG Y W, WEI Y C, WANG K W. The effect of oxygen containing species on the catalytic activity of ethanol oxidation for PtRuSn/C catalysts[J]. Electrochim Acta, 2011, 56(5):2574-2581. doi: 10.1016/j.electacta.2010.11.013
    [14]
    JONGSOMJIT S, SOMBATMANKHONG K, PRAPAINAINAR P. Effect of acid functionalised carbon supports for Pd-Ni-Sn catalyst on ethanol oxidation reaction[J]. RSC Adv, 2015, 5(75):61298-61308. doi: 10.1039/C5RA07508D
    [15]
    WANG J, YIN G, SHAO Y, WANG Z, GAO Y. Investigation of further improvement of platinum catalyst durability with highly graphitized carbon nanotubes support[J]. J Phys Chem C, 2008, 112(15):5784-5789. doi: 10.1021/jp800186p
    [16]
    MUNEENDRA PRASAD A, SANTHOSH C, NIRMALA GRACE A. Carbon nanotubes and polyaniline supported Pt nanoparticles for methanol oxidation towards DMFC applications[J]. Appl Nanosci, 2012, 2(4):457-466. doi: 10.1007/s13204-012-0061-4
    [17]
    LIU Z L, HUANG R, DENG Y J, CHEN D H, HUANG L, CAI Y R, WANG Q, CHEN S P, SUN S G. Catalyst of Pt nanoparticles loaded on multi-walled carbon nanotubes with high activity prepared by electrodeposition without supporting electrolyte[J]. Electrochim Acta, 2013, 112:919-926. doi: 10.1016/j.electacta.2013.05.139
    [18]
    AIYAPPA H B, PACHFULE P, BANERJEE R, KURUNGOT S. Porous carbons from nonporous MOFs:Influence of ligand characteristics on intrinsic properties of end carbon[J]. Cryst Growth Des, 2013, 13(10):4195-4199. doi: 10.1021/cg401122u
    [19]
    XI K, CAO S, PENG X, DUCATI C, KUMAR R V, CHEETHAM A K. Carbon with hierarchical pores from carbonized metal-organic frameworks for lithium sulphur batteries[J]. Chem Commun (Camb), 2013, 49(22):2192-2194. doi: 10.1039/c3cc38009b
    [20]
    LIM S, SUH K, KIM Y, YOON M, PARK H, DYBTSEV D N, KIM K. Porous carbon materials with a controllable surface area synthesized from metal-organic frameworks[J]. Chem Commun (Camb), 2012, 48(60):7447-7449. doi: 10.1039/c2cc33439a
    [21]
    LÁZARO M J, CELORRIO V, CALVILLO L, PASTOR E, MOLINER R. Influence of the synthesis method on the properties of Pt catalysts supported on carbon nanocoils for ethanol oxidation[J]. J Power Sources, 2011, 196(9):4236-4241. doi: 10.1016/j.jpowsour.2010.10.055
    [22]
    CALVILLO L, CELORRIO V, MOLINER R, LÁZARO M J. Influence of the support on the physicochemical properties of Pt electrocatalysts:Comparison of catalysts supported on different carbon materials[J]. Mater Chem Phys, 2011, 127(1/2):335-341. https://www.researchgate.net/publication/238000446_Influence_of_the_support_on_the_physicochemical_properties_of_Pt_electrocatalysts_Comparison_of_catalysts_supported_on_different_carbon_materials
    [23]
    SCHLANGE A, DOS SANTOS A R, HASSE B, ETZOLD B J M, KUNZ U, TUREK T. Titanium carbide-derived carbon as a novel support for platinum catalysts in direct methanol fuel cell application[J]. J Power Sources, 2012, 199:22-28. doi: 10.1016/j.jpowsour.2011.09.107
    [24]
    STEIN A, WANG Z, FIERKE M A. Functionalization of porous carbon materials with designed pore architecture[J]. Adv Mater, 2009, 21(3):265-293. doi: 10.1002/adma.v21:3
    [25]
    XUE P, GAO J, BAO Y, WANG J, LI Q, WU C. An analysis of microstructural variations in carbon black modified by oxidation or ultrasound[J]. Carbon, 2011, 49(10):3346-3355. doi: 10.1016/j.carbon.2011.04.040
    [26]
    UNGÁR T, GUBICZA J, RIBÁRIK G, PANTEA C, ZERDA T W. Microstructure of carbon blacks determined by X-ray diffraction profile analysis[J]. Carbon, 2002, 40(6):929-937. doi: 10.1016/S0008-6223(01)00224-X
    [27]
    LI W, LIANG C, ZHOU W, QIU J, ZHOU, SUN G, XIN Q. Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells[J]. J Phys Chem B, 2003, 107(26):6292-6299. doi: 10.1021/jp022505c
    [28]
    MEN X H, ZHANG Z Z, SONG H J, WANG K, JIANG W. Functionalization of carbon nanotubes to improve the tribological properties of poly (furfuryl alcohol) composite coatings[J]. Compos Sci Technol, 2008, 68(3/4):1042-1049. https://www.researchgate.net/publication/229406106_Functionalization_of_carbon_nanotubes_to_improve_the_tribological_properties_of_poly_furfuryl_alcohol_composite_coatings
    [29]
    OSORIO A G, SILVEIRA I C L, BUENO V L, BERGMANN C P. H2SO4/HNO3/HCl-Functionalization and its effect on dispersion of carbon nanotubes in aqueous media[J]. Appl Surf Sci, 2008, 255(5):2485-2489. doi: 10.1016/j.apsusc.2008.07.144
    [30]
    HUANG W, WANG Y, LUO G, WEI F. 99.9% purity multi-walled carbon nanotubes by vacuum high-temperature annealing[J]. Carbon, 2003, 41(13):2585-2590. doi: 10.1016/S0008-6223(03)00330-0
    [31]
    YUDIANTI R, ONGGO H, SUDIRMAN, SAITO Y, IWATA T, AZUMA J I. Analysis of functional group sited on multi-wall carbon nanotube surface[J]. Open Mater Sci J, 2011, 5:242-247. doi: 10.2174/1874088X01105010242
    [32]
    WU G, CHEN Y S, XU B Q. Remarkable support effect of SWNTs in Pt catalyst for methanol electrooxidation[J]. Electrochem Commun, 2005, 7(12):1237-1243. doi: 10.1016/j.elecom.2005.07.015
    [33]
    ASHOK KUMAR N, GANAPATHY H S, KIM J S, JEONG Y S, JEONG Y T. Preparation of poly 2-hydroxyethyl methacrylate functionalized carbon nanotubes as novel biomaterial nanocomposites[J]. Eur Polym J, 2008, 44(3):579-586. doi: 10.1016/j.eurpolymj.2007.12.009
    [34]
    MARZORATI S, RAGG E M, LONGHI M, FORMARO L. Low-temperature intermediates to oxygen reduction reaction catalysts based on amine-modified metal-loaded carbons. An XPS and ss-NMR investigation[J]. Mater Chem Phys, 2015, 162:234-243. doi: 10.1016/j.matchemphys.2015.05.063
    [35]
    PAN X, BAO X. Reactions over catalysts confined in carbon nanotubes[J]. Chem Commun, 2008, (47):6271-6281. doi: 10.1039/b810994j
    [36]
    PARK K W, CHOI J H, KWON B K, LEE S A, SUNG Y E, HA H Y, HONG S A, KIM H, WIECKOWSKI A. Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation[J]. J Phys Chem B, 2002, 106(8):1869-1877. doi: 10.1021/jp013168v
    [37]
    WU G, SWAIDAN R, CUI G. Electrooxidations of ethanol, acetaldehyde and acetic acid using PtRuSn/C catalysts prepared by modified alcohol-reduction process[J]. J Power Sources, 2007, 172(1):180-188. doi: 10.1016/j.jpowsour.2007.07.034
    [38]
    BEYHAN S, LÉGER J M, KADIRGAN F. Pronounced synergetic effect of the nano-sized PtSnNi/C catalyst for ethanol oxidation in direct ethanol fuel cell[J]. Appl Catal B:Environ, 2013, 130-131:305-313. doi: 10.1016/j.apcatb.2012.11.007
    [39]
    CUNHA E M, RIBEIRO J, KOKOH K B, DE ANDRADE A R. Preparation, characterization and application of Pt-Ru-Sn/C trimetallic electrocatalysts for ethanol oxidation in direct fuel cell[J]. Int J Hydrogen Energy, 2011, 36(17):11034-11042. doi: 10.1016/j.ijhydene.2011.06.011
    [40]
    LÓPEZ-SUÁREZ F E, BUENO-LÓPEZ A, EGUILUZ K I B, SALAZAR-BANDA G R. Pt-Sn/C catalysts prepared by sodium borohydride reduction for alcohol oxidation in fuel cells:Effect of the precursor addition order[J]. J Power Sources, 2014, 268:225-232. doi: 10.1016/j.jpowsour.2014.06.042
    [41]
    GUO J W, ZHAO T S, PRABHURAM J, CHEN R, WONG C W. Preparation and characterization of a PtRu/C nanocatalyst for direct methanol fuel cells[J]. Electrochim Acta, 2005, 51(4):754-763. doi: 10.1016/j.electacta.2005.05.056
    [42]
    THEPKAEW J, THERDTHIANWONG S, THERDTHIANWONG A, KUCERNAK A, WONGYAO N. Promotional roles of Ru and Sn in mesoporous PtRu and PtRuSn catalysts toward ethanol electrooxidation[J]. Int J Hydrogen Energy, 2013, 38(22):9454-9463. doi: 10.1016/j.ijhydene.2012.12.038
    [43]
    DOU M, HOU M, LI Z, WANG F, LIANG D, SHAO Z, YI B. Pt/WO3/C nanocomposite with parallel WO3 nanorods as cathode catalyst for proton exchange membrane fuel cells[J]. J Energy Chem, 2015, 24(1):39-44. doi: 10.1016/S2095-4956(15)60282-0
    [44]
    JIA Y J, JIANG J C, SUN K, LU T H. Effect of Pt/Au atomic ratio in active-carbon-supported Au-Pt catalysts on its cathodic performance in direct formic acid fuel cells[J]. J Fuel Chem Technol, 2011, 39(10):792-795. doi: 10.1016/S1872-5813(11)60046-7
    [45]
    MEI Z, LI Y, FAN M, ZHAO L, ZHAO J. Effect of the interactions between Pt species and ceria on Pt/ceria catalysts for water gas shift:The XPS studies[J]. Chem Eng J, 2015, 259:293-302. doi: 10.1016/j.cej.2014.07.125
    [46]
    YI L, WEI W, ZHAO C, YANG C, TIAN L, LIU J, WANG X. Electrochemical oxidation of sodium borohydride on carbon supported Pt-Zn nanoparticle bimetallic catalyst and its implications to direct borohydride-hydrogen peroxide fuel cell[J]. Electrochim Acta, 2015, 158:209-218. doi: 10.1016/j.electacta.2015.01.111
    [47]
    ZHAO J, LI H, LIU Z, HU W, ZHAO C, SHI D. An advanced electrocatalyst with exceptional eletrocatalytic activity via ultrafine Pt-based trimetallic nanoparticles on pristine graphene[J]. Carbon, 2015, 87:116-127. doi: 10.1016/j.carbon.2015.01.038
    [48]
    WANG Z B, ZUO P J, WANG G J, DU C Y, YIN G P. Effect of Ni on PtRu/C catalyst performance for ethanol electrooxidation in acidic medium[J]. J Power Sources, 2008, 112(16):6582-6587. doi: 10.1021/jp800249q
    [49]
    PARKINSON C R, WALKER M, MCCONVILLE C F. Reaction of atomic oxygen with a Pt (111) surface:Chemical and structural determination using XPS, CAICISS and LEED[J]. Surf Sci, 2003, 545(1/2):19-33. http://wrap.warwick.ac.uk/9187/
    [50]
    CARMO M, PAGANIN V A, ROSOLEN J M, GONZALEZ E R. Alternative supports for the preparation of catalysts for low-temperature fuel cells:The use of carbon nanotubes[J]. J Power Sources, 2005, 142(1/2):169-176. https://www.researchgate.net/publication/223481510_Alternative_supports_for_the_preparation_of_catalysts_for_low-temperature_fuel_cells_The_use_of_carbon_nanotubes
    [51]
    BESSEL C A, LAUBERNDS K, RODRIGUEZ N M, BAKER R T K. Graphite nanofibers as an electrode for fuel cell applications[J]. J Phys Chem B, 2001, 105(6):1115-1118. doi: 10.1021/jp003280d
    [52]
    STEVANOVIĆS, TRIPKOVIĆD, ROGAN J, POPOVIĆK, LOVIĆ J, TRIPKOVIĆ A, JOVANOVIĆ V M. Microwave-assisted polyol synthesis of carbon-supported platinum-based bimetallic catalysts for ethanol oxidation[J]. J Solid State Electr, 2012, 16(10):3147-3157. doi: 10.1007/s10008-012-1755-y
    [53]
    STEVANOVIĆ S, TRIPKOVIĆ D, ROGAN J, MINIĆ D, GAVRILOVIĆ A, TRIPKOVIĆ A, JOVANOVIĆ V M. Enhanced activity in ethanol oxidation of Pt3Sn electrocatalysts synthesized by microwave irradiation[J]. Russ J Phys Chem A, 2011, 85(13):2299-2304. doi: 10.1134/S0036024411130309
    [54]
    JAFRI R I, RAMAPRABHU S. Multi walled carbon nanotubes based micro direct ethanol fuel cell using printed circuit board technology[J]. Int J Hydrogen Energy, 2010, 35(3):1339-1346. doi: 10.1016/j.ijhydene.2009.11.067
    [55]
    CHEN J, JIANG C, LU H, FENG L, YANG X, LI L, WANG R. Solvent effects on Pt-Ru/C catalyst for methanol electro-oxidation[J]. J Nat Gas Chem, 2009, 18(3):341-345. doi: 10.1016/S1003-9953(08)60114-0
    [56]
    COLMATI F, ANTOLINI E, GONZALEZ E R. Effect of temperature on the mechanism of ethanol oxidation on carbon supported Pt, PtRu and Pt3Sn electrocatalysts[J]. J Power Sources, 2006, 157(1):98-103. doi: 10.1016/j.jpowsour.2005.07.087
    [57]
    YOO J S, KIM H T, JOH H-I, KIM H, MOON S H. Preparation of a CO-tolerant PtRuxSny/C electrocatalyst with an optimal Ru/Sn ratio by selective Sn-deposition on the surfaces of Pt and Ru[J]. Int J Hydrogen Energy, 2011, 36(3):1930-1938. doi: 10.1016/j.ijhydene.2010.11.061
    [58]
    DONG L L, TONG X L, WANG Y Y, JIN G Q, GUO X Y. Boron-doped silicon carbide supported Pt catalyst for methanol electrooxidation[J]. J Fuel Chem Technol, 2014, 42(7):845-850. doi: 10.1016/S1872-5813(14)60036-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (74) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return