Volume 46 Issue 11
Nov.  2018
Turn off MathJax
Article Contents
LI Shi-ya, LÜ Shuai, ZHANG Yu-hua, LI Jin-lin, LIU Zhong-neng, WANG Li. Syngas-derived olefins over iron-based catalysts: Effects of basic properties of MgO nanocrystals[J]. Journal of Fuel Chemistry and Technology, 2018, 46(11): 1342-1351.
Citation: LI Shi-ya, LÜ Shuai, ZHANG Yu-hua, LI Jin-lin, LIU Zhong-neng, WANG Li. Syngas-derived olefins over iron-based catalysts: Effects of basic properties of MgO nanocrystals[J]. Journal of Fuel Chemistry and Technology, 2018, 46(11): 1342-1351.

Syngas-derived olefins over iron-based catalysts: Effects of basic properties of MgO nanocrystals

Funds:

the Key Program Project of the NSFC and China Petrochemical Corporation Joint Fund U1463210

the Fundamental Research Funds for the Central Universities, South-Central University for Nationalities CZW15099

the Fundamental Research Funds for the Central Universities, South-Central University for Nationalities CZP17028

the Fundamental Research Funds for the Central Universities, South-Central University for Nationalities CZP17065

More Information
  • Corresponding author: Jin-lin, Fax:+86-27-67842752, E-mail:jinlinli@aliyun.com; WANG Li, Tel:+86-27-67842922, E-mail:li.wang@mail.scuec.edu.cn
  • Received Date: 2018-06-22
  • Rev Recd Date: 2018-09-18
  • Available Online: 2021-01-23
  • Publish Date: 2018-11-10
  • A series of Fe/MgO catalysts with well-defined exposed crystal planes were synthesized by impregnation, deposition-precipitation and ultrasonic impregnation methods. The catalysts were characterized by X-ray powder diffraction, high-resolution transmission electron microscopy, CO2 temperature-programmed desorption, H2 temperature-programmed reduction, X-ray spectroscopy and N2 adsorption-desorption isotherms. The characterization results indicate that the basicity of MgO supports strongly affect the catalytic performance of iron-based catalysts for Fischer-Tropsch synthesis. It is found that the strong basicity sites of MgO supports remain during the ultrasonic impregnation process. The intrinsic basicity of Fe/MgO catalysts enhances dissociative CO adsorption and promotes the olefin selectivity. In addition, the catalyst of iron particles on the (111) crystal planes of MgO nanosheets presents higher TOF value and olefins selectivity than that of the catalyst using the (100) crystal planes of MgO nanocubes as a support. The effect of basic properties of MgO nanocrystals facilitates CO chemisorption, suppressing H2 adsorption and olefin desorption on the corresponding Fe/MgO catalysts.
  • 本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http://www.sciencedirect.com/science/journal/18725813).
  • loading
  • [1]
    CHENG K, KANG J, KING D L, VIJAYANAND S, ZHOU C, ZHANG Q, WANG Y. Advances in catalysis for syngas conversion to hydrocarbons[J]. Adv Catal, 2017, 60:125-208.
    [2]
    KOMATSU T, FUKUI Y. Fischer-Tropsch synthesis on RuTi intermetallic compound catalyst[J]. Appl Catal A:Gen, 2005, 279(1/2):173-180. http://www.sciencedirect.com/science/article/pii/S0926860X04008567
    [3]
    LIU C, ZHANG Y, ZHAO Y, WEI L, HONG J, WANG L, CHEN S, WANG G, LI J. The effect of the nanofibrous Al2O3 aspect ratio on Fischer-Tropsch synthesis over cobalt catalysts[J]. Nanoscale, 2017, 9(2):570-581. doi: 10.1039/C6NR07529K
    [4]
    DAVIS B H. Fischer-Tropsch synthesis:Comparison of performances of iron and cobalt catalysts[J]. Ind Eng Chem Res, 2007, 46:8938-8945. doi: 10.1021/ie0712434
    [5]
    TORRES GALVIS H M, DE JONG K P. Catalysts for production of lower olefins from synthesis gas:A review[J]. ACS Catal, 2013, 3(9):2130-2149. doi: 10.1021/cs4003436
    [6]
    ZHAI P, XU C, GAO R, LIU X, LI M, LI W, FU X, JIA C, XIE J, ZHAO M, WANG X, LI Y, ZHANG Q, WEN X, MA D. Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe5C2 catalyst[J]. Angew Chem Int Ed, 2016, 55(35):9902-9907. http://www.chemeurope.com/en/publications/988869/highly-tunable-selectivity-for-syngas-derived-alkenes-over-zinc-and-sodium-modulated-fe5c2-catalyst.html
    [7]
    SSUN J, CHEN Y, CHEN J. Towards stable Fe-based catalysts with suitable active phase for Fischer-Tropsch synthesis to lower olefins[J]. Catal Commun, 2017, 91:34-37. doi: 10.1016/j.catcom.2016.12.008
    [8]
    ASAMI K, KOMIYAMA K, YOSHIDA K, MIYAHARA H. Synthesis of lower olefins from synthesis gas over active carbon-supported iron catalyst[J]. Catal Today, 2018, 303:117-122. doi: 10.1016/j.cattod.2017.09.010
    [9]
    TORRES GALVIS H M, BITTER J H, KHARE C B, RUITENBEEK M, IULIAN DUGULAN A, DE JONG. K P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science, 2012, 335(6070):835-838. doi: 10.1126/science.1215614
    [10]
    LI J, CHENG X, ZHANG C, YANG Y, LI Y. Effects of alkali on iron-based catalysts for Fischer-Tropsch synthesis:CO chemisorptions study[J]. J Mol Catal A:Chem, 2015, 396:174-180. doi: 10.1016/j.molcata.2014.10.006
    [11]
    PARK J C, YEO S C, CHUN D H, LIM J T, YANG J, LEE H, SUNG-JUN H, LEE H M, KIM C S, JUNG H. Highly activated K-doped iron carbide nanocatalysts designed by computational simulation for Fischer-Tropsch synthesis[J]. J Mater Chem A, 2014, 2(35):14371-14379. doi: 10.1039/C4TA02413C
    [12]
    YANG J, SUN Y, TANG Y, LIU Y, WANG H, TIAN L, WANG H, ZHANG Z, XIANG H, LI Y. Effect of magnesium promoter on iron-based catalyst for Fischer-Tropsch synthesis[J]. J Mater Chem A, 2006, 245(1/2):26-36. http://www.sciencedirect.com/science/article/pii/S1381116905006151
    [13]
    CHENG Y, LIN J, WU T, WANG H, XIE S, PEI Y, YAN S, QIAO M, ZONG B. Mg and K dual-decorated Fe-on-reduced graphene oxide for selective catalyzing CO hydrogenation to light olefins with mitigated CO2 emission and enhanced activity[J]. Appl Catal B:Environ, 2017, 204:475-485. doi: 10.1016/j.apcatb.2016.11.058
    [14]
    CAGNOLI M V, MARCHETTI S G, GALLEGOS N G, ALVAREZ A M, MERCADER R C, YERAMIAN A A. Influence of the support on the activity and selectivity of high dispersion Fe catalysts in the Fischer-Tropsch reaction[J]. J Catal, 1990, 123(1):21-30. doi: 10.1016/0021-9517(90)90154-C
    [15]
    CAGNOLI M V, MARCHETTI S G, GALLEGOS N G, ALVAREZ A L, YERAMIAN A A, MERCADER R C. Effect of thermal pretreatment on the structural properties of Fe/MgO catalysts in hydrocarbon synthesis from CO and H2[J]. Mater Chem Phys, 1991, 27(4):403-418. doi: 10.1016/0254-0584(91)90137-J
    [16]
    ARSALANFAR M, MIRZAEI A A, BOZORGZADEH H R, SAMIMIC A, GHOBADIA R. Effect of support and promoter on the catalytic performance and structural properties of the Fe-Co-Mn catalysts for Fischer-Tropsch synthesis[J]. J Ind Eng Chem, 2014, 20(4):1313-1323. doi: 10.1016/j.jiec.2013.07.011
    [17]
    KAKE Z, HU J, KÜBEL C, RICHARDS R. Efficient Preparation and Catalytic Activity of MgO(111) Nanosheets[J]. Angew Chem Int Ed, 2006, 118(43):7435-7439. doi: 10.1002/(ISSN)1521-3757
    [18]
    LI Z, CIOBANU C V, HU J, JUAN-PEDRO PALOMARES-BA'EZ, JOSE'-LUIS RODRI'GUEZ-LO'PEZD, RYAN RICHARDS. Experimental and DFT studies of gold nanoparticles supported on MgO(111) nano-sheets and their catalytic activity[J]. Phys Chem Chem Phys, 2011, 13(7):2582-2589. doi: 10.1039/c0cp01820a
    [19]
    HACQUART R, KRAFFT J, COSTENTIN G, JUPILLE J. Evidence for emission and transfer of energy from excited edge sites of MgO smokes by photoluminescence experiments[J]. Surf Sci, 2005, 595(1/3):172-182. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ026076871
    [20]
    Li Y, AFZAAL M, O'BRIEN P. The synthesis of amine-capped magnetic (Fe, Mn, Co, Ni) oxide nanocrystals and their surface modification for aqueous dispersibility[J]. J Mater Chem, 2006, 16(22):2175-2180. doi: 10.1039/b517351e
    [21]
    KAKE Z, HUA W, DENG W, RICHARDS R M. Preparation of MgO nanosheets with polar (111) surfaces by ligand exchange and esterification-synthesis, structure, and application as catalyst support[J]. Eur J Inorg Chem, 2012, 2012(17):2869-2876. doi: 10.1002/ejic.v2012.17
    [22]
    LIANG M, KANG W, XIE K. Comparison of reduction behavior of Fe2O3, ZnO and ZnFe2O4 by TPR technique[J]. J Nat Gas Chem, 2009, 18(1):110-113. doi: 10.1016/S1003-9953(08)60073-0
    [23]
    LIU Y, CHEN J, BAO J, ZHANG Y. Manganese-modified Fe3O4 microsphere catalyst with effective active phase of forming light olefins from syngas[J]. ACS Catal, 2015, 5(6):3905-3909. doi: 10.1021/acscatal.5b00492
    [24]
    MILLS P, SULLIVAN J L. A study of the core level electrons in iron and its three oxides by means of x-ray photoelectron spectroscopy[J]. J Phys D:Appl Phys, 1983, 16:723-732. doi: 10.1088/0022-3727/16/5/005
    [25]
    BIESINGERA M C, PAYNE B P, GROSVENOR A P, LAU L W M, GERSON A R, SMART R S C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides:Cr, Mn, Fe, Co and Ni[J]. Appl Surf Sci, 2011, 257(7):2717-2730. doi: 10.1016/j.apsusc.2010.10.051
    [26]
    NORDMANN T, KUSCHEL O, WOLLSCHLÄGER J. Epitaxial growth of ultrathin MgO layers on Fe3O4(001) films[J]. Appl Surf Sci, 2016, 381:28-31. doi: 10.1016/j.apsusc.2016.02.133
    [27]
    DRY M E, OOSTHUIZEN J G. The correlation between catalyst surface basicity and hydrocarbon selectivity in the Fischer-Tropsch synthesis[J]. J Catal, 1968, 11(11):18-24. http://www.sciencedirect.com/science/article/pii/0021951768900043
    [28]
    LU J, YANG L, XU B, WU Q, ZHANG D, YUAN S, ZHAI Y, WANG X, FAN Y, HU Z. Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer-Tropsch catalysts for lower olefins[J]. ACS Catal, 2014, 4(2):613-621. doi: 10.1021/cs400931z
    [29]
    GALLEGOS N G, ALVAREZ A M, CAGNOLI M V, BENGOA J F, MARCHETTI S G, MERCADER R C, YERAMIAN A A. Selectivity to olefins of Fe/SiO2-MgO catalysts in the Fischer-Tropsch reaction[J]. J Catal, 1996, 161:132-142. doi: 10.1006/jcat.1996.0170
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (94) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return