Volume 46 Issue 3
Mar.  2018
Turn off MathJax
Article Contents
Amir Mosayebi, Reza Abedini. Effect of synthesis solution pH of Co/γ-Al2O3 catalyst on its catalytic properties for methane conversion to syngas[J]. Journal of Fuel Chemistry and Technology, 2018, 46(3): 311-318.
Citation: Amir Mosayebi, Reza Abedini. Effect of synthesis solution pH of Co/γ-Al2O3 catalyst on its catalytic properties for methane conversion to syngas[J]. Journal of Fuel Chemistry and Technology, 2018, 46(3): 311-318.

Effect of synthesis solution pH of Co/γ-Al2O3 catalyst on its catalytic properties for methane conversion to syngas

More Information
  • Corresponding author: Amir Mosayebi, E-mail: mosayebi@tafreshu.ac.ir
  • Received Date: 2017-11-01
  • Rev Recd Date: 2018-01-31
  • Available Online: 2021-01-23
  • Publish Date: 2018-03-10
  • The cobalt nanoparticles over γ-Al2O3 support were prepared via chemical reduction of CoCl2·6H2O using NaBH4 with various values of pH in the range of 11.92-13.80. Synthesized catalysts were studied through X-ray diffraction (XRD), N2 adsorption/desorption (BET), H2-temperature programmed reduction (H2-TPR), H2-chemisorption, O2 pulse titration and temperature programmed oxidation (TPO) methods. Obtained results exhibited the synthesis solution pH showed a significant influence on the activity and selectivity in partial oxidation of methane reaction. The methane conversion, CO selectivity and H2 yield were enhanced by increasing of the synthesis solution pH. Compared to other catalysts, the catalyst that synthesized at pH of 13.80, showed a superior ability in syngas production with a H2/CO ratio of near 2 and also a proper stability against deactivation during the partial oxidation of methane.
  • loading
  • [1]
    MOSAYEBI A, ABEDINI R. Partial oxidation of butane to syngas using nanostructure Ni/zeolite catalysts[J]. J Ind Eng Chem, 2014, 20(4):1542-1548. doi: 10.1016/j.jiec.2013.07.044
    [2]
    MOSAYEBI A, ABEDINI R, BAKHSHI H. Ni@Pd nanoparticle with core-shell structure supported overγ-Al2O3 for partial oxidation process of methane to syngas[J]. Int J Hydrogen Energy, 2017, 42(30):18941-18950. doi: 10.1016/j.ijhydene.2017.06.027
    [3]
    YU C L, HU J B, WENG W Z, ZHOU X C, CHEN X R. Preparation of Co/Ce0.5Zr0.5O2 catalysts and their catalytic performance in methane partial oxidation to produce synthesis gas[J]. J Fuel Chem Technol, 2012, 40(4):418-423. doi: 10.1016/S1872-5813(12)60019-X
    [4]
    YU C L, ZHOU X C, WENG W Z, HU J B, Chen X R, WEI L F. Effects of alkaline-earth strontium on the performance of Co/Al2O3 catalyst for methane partial oxidation[J]. J Fuel Chem Technol, 2012, 40(10):1222-1229. doi: 10.1016/S1872-5813(12)60123-6
    [5]
    JAFARBEGLOO M, TARLANI A, WAHID MESBAH A, SAHEBDELFAR S. One-pot synthesis of NiO-MgO nanocatalysts for CO2 reforming of methane:The influence of active metal content on catalytic performance[J]. J Nat Gas Sci Eng, 2015, 27(2):1165-1173. https://www.sciencedirect.com/science/article/pii/S1875510015301980
    [6]
    YU C, WENG W, SHU Q, MENG X, ZHANG B, CHEN X, ZHOU X. Additive effects of alkaline-earth metals and nickel on the performance of Co/γ-Al2O3 in methane catalytic partial oxidation[J]. J Nat Gas Chem, 2011, 20(2):135-139. doi: 10.1016/S1003-9953(10)60175-2
    [7]
    NASABI M, LABBAFI M, MOUSAVI M E, MADADLOU A. Effect of salts and nonionic surfactants on thermal characteristics of egg white proteins[J]. Int J Biol Macromol, 2017, 102(1):970-976. https://www.sciencedirect.com/science/article/pii/S0141813017302192
    [8]
    LARIMI A S, ALAVI S M. Ceria-zirconia supported Ni catalysts for partial oxidation of methane to synthesis gas[J]. Fuel, 2012, 102(1):366-371. https://www.sciencedirect.com/science/article/pii/S001623611200470X
    [9]
    KIM H W, KANG K M, KWAK H Y. Preparation of supported Ni catalysts with a core/shell structure and their catalytic tests of partial oxidation of methane[J]. Int J Hydrogen Energy, 2009, 34(8):3351-3359. doi: 10.1016/j.ijhydene.2009.02.036
    [10]
    LI L, HE S, SONG S, ZHAO J, JI W, TAO C K. Fine-tunable Ni@porous silica core-shell nanocatalysts:Synthesis, characterization, and catalytic properties in partial oxidation of methane to syngas[J]. J Catal, 2012, 288(1):54-64. https://www.sciencedirect.com/science/article/pii/S0021951712000061
    [11]
    XING C, AI P, ZHANG P, GAO X, YANG R, YAMANE N, SUN J, REUBROYCHAROEN P, TSUBAKI N. Fischer-Tropsch synthesis on impregnated cobalt-based catalysts:New insights into the effect of impregnation solutions and pH value[J]. J Energ Chem, 2016, 25(6):994-1000. doi: 10.1016/j.jechem.2016.09.008
    [12]
    DELGADO J A, CASTILL S, CURULLA-FERR'E D, CLAVER C, GODARD C. Effect of pH on catalyst activity and selectivity in the aqueous Fischer-Tropsch synthesis catalyzed by cobalt nanoparticles[J]. Catal Commun, 2015, 71(1):88-92. https://www.sciencedirect.com/science/article/pii/S1566736715300376
    [13]
    LI Z, SI M, LI X, LIU R, LIU R, LV J. Cobalt catalysts for Fischer-Tropsch synthesis:The effect of support, precipitant and pH value[J]. Chin J chem Eng, 2017. http://doi.org/10.1016/j.cjche.2017.11.001. doi: 10.1016/j.cjche.2017.11.001
    [14]
    LIU J, YU J, SU F B, XU G W. Inter correlation of structure and performance of Ni-Mg/Al2O3 catalysts prepared with different methods for syngas methanation[J]. Catal Sci Technol, 2014, 4(2):472-481. doi: 10.1039/C3CY00601H
    [15]
    BAE J W, LEE Y J, PARK Y J, JUN K W. Influence of pH of the Impregnation solution on the catalytic properties of Co/Alumina for FTS[J]. Energy Fuels, 2008, 22(5):2885-2891. doi: 10.1021/ef800155v
    [16]
    MOSAYEBI A, HAGHTALAB A. The comprehensive kinetic modeling of the Fischer-Tropsch synthesis over Co@Ru/γ-Al2O3 core-shell structure catalyst[J]. Chem Eng J, 2015, 259(1):191-204. doi: 10.1021/cm0111074
    [17]
    MOSAYEBI A, MEHRPOUYA M A, ABEDINI R. The development of new comprehensive kinetic modelingfor Fischer-Tropsch synthesis process over Co-Ru/Al2O3 nano-catalyst in a fixed-bed reactor[J]. Chem Eng J, 2016, 286(1):416-426. http://www.researchgate.net/publication/284084679_The_development_of_new_comprehensive_kinetic_modeling_for_Fischer-Tropsch_synthesis_process_over_Co-Ru-Al2O3_catalyst_in_a_fixed-bed_reactor
    [18]
    ABEDINI R, MOSAYEBI A, MOKHTARI M. Improved CO2 separation of azide cross-linked PMPmixed matrix membrane embedded by nano-CuBTC metal organic framework[J]. Process Saf Environ, 2018, 114(1):229-239. http://www.sciencedirect.com/science/article/pii/S0957582018300028
    [19]
    HAGHTALAB A, MOSAYEBI A. Co@Ru nanoparticle with core-shell structure supported over Al2O3 for Fischer-Tropsch synthesis[J]. Int J Hydrogen Energy, 2014, 39(33):18882-18893. doi: 10.1016/j.ijhydene.2014.09.074
    [20]
    KHODAKOV A Y, CHU W, FONGARLAND P. Recent advances in the liquid-phase syntheses of inorganic nanoparticles, Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of Long-Chain hydrocarbons and clean fuels[J]. Chem Rev, 2007, 107(5):1692-744. doi: 10.1021/cr050972v
    [21]
    PARK J Y, LEE Y J, KARANDIKAR P R, JUN K W, HA K S, PARK H. Fischer-Tropsch catalyst deposited with size controlled Co3O4 nanocrystals:effect of particle size on catalytic activity and stability[J]. Appl Catal A:Gen, 2012, 411-412(1):15-23. https://www.sciencedirect.com/science/article/pii/S0021951715000585
    [22]
    MOSAYEBI A, ABEDINI R. Detailed kinetic study of Fischer-Tropsch synthesis for gasoline production over Co-Ni/HZSM-5 nano-structure catalyst[J]. Int J Hydrogen Energy, 2017, 42(44):27013-27023. doi: 10.1016/j.ijhydene.2017.09.060
    [23]
    WANG S, YIN Q, GUO J, RU B, ZHU L. Improved Fischer-Tropsch synthesis for gasoline over Ru, Ni promoted Co/HZSM-5 catalysts[J]. Fuel, 2013, 108(1):597-603. https://www.sciencedirect.com/science/article/pii/S0016236113001099
    [24]
    BAYRAKDAR E, GVRKAYNAKALTINÇ EKIÇT, ÖKSVZÖMER M A F. Effects of PVP on the preparation of nanosized Al2O3 supported Ni catalysts by polyol method for catalytic partial oxidation of methane[J]. Fuel Process Technol, 2013, 110(1):167175. http://www.sciencedirect.com/science/article/pii/S0378382012004560
    [25]
    FERREIRA A C, FERRARIA A M, BOTEIHO A M, GONCALVE A P, CORREIA C. Partial oxidation of methane over bimetallic nickel-lanthanide oxides[J]. J Alloys Compd, 2010, 489(1):316-323. doi: 10.1016/j.jallcom.2009.09.082
    [26]
    TAKENAKA S, ORITA Y, UMEBAYASHI H, MATSUNE H, KISHIDA M. High resistance to carbon deposition of silica-coated Ni catalysts in propane stream reforming[J]. Appl Catal A:Gen, 2008, 351(2):189-194. doi: 10.1016/j.apcata.2008.09.017
    [27]
    RUCKENSTEIN E, WANG H Y. Carbon deposition and catalytic deactivation during CO2 reforming of CH4 over Co/Al2O3 catalysts[J]. J Catal, 2002, 205(2):289-293. doi: 10.1006/jcat.2001.3458
    [28]
    LØDENG R, BJØRGUM E, ENGER B C, EILERTSEN J L, HOLMEN A, KROGH B, RØNNEKLEIV M, RYTTER E. Catalytic partial oxidation of CH4 to H2 over cobalt catalysts at moderate temperatures[J]. Appl Catal A:Gen, 2007, 333(1):11-23. doi: 10.1016/j.apcata.2007.08.038
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (76) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return