Volume 48 Issue 2
Feb.  2020
Turn off MathJax
Article Contents
HUANG Peng, LI Wen-bo, MAO Xue-feng, ZHAO Peng. Study on suspension bed hydrocracking of medium temperature pyrolytic heavy tar fraction[J]. Journal of Fuel Chemistry and Technology, 2020, 48(2): 154-161.
Citation: HUANG Peng, LI Wen-bo, MAO Xue-feng, ZHAO Peng. Study on suspension bed hydrocracking of medium temperature pyrolytic heavy tar fraction[J]. Journal of Fuel Chemistry and Technology, 2020, 48(2): 154-161.

Study on suspension bed hydrocracking of medium temperature pyrolytic heavy tar fraction

Funds:

The project was supported by the National Key Research and Development Project 2016YFB0600305

the National Natural Science Foundation of China U1610221

More Information
  • Corresponding author: LI Wen-bo.Tel:010-84262941,E-mail:wenbo-li@126.com
  • Received Date: 2019-12-20
  • Rev Recd Date: 2020-01-16
  • Available Online: 2021-01-23
  • Publish Date: 2020-02-10
  • The medium temperature pyrolytic coal tar was used as raw material and was analyzed, in which the fraction with boiling point > 350 ℃ that contains the resin of 30.88%, the asphaltene of 37.27% and the tetrahydrofuran insolubles of 3.36% is difficult to hydrocrack directly by conventional fixed bed. A Mo-based ultra-dispersed catalyst was synthesized, and characterized by FT-IR, XPS, XRD, SEM and TEM, etc. The catalyst contains Mo=O and Mo-S characteristic structure and has an excellent dispersibility in the reaction system, and the vulcanization ratio of molybdenum reaches 84.34%. The catalyst can be decomposed into hyper dispersive MoS2 particle in the reaction system. The suspension bed hydrocracking experiments were carried out in a 0.25 t/d continuous unit with heavy fraction of tar. Moreover, the effects of reaction conditions on product distribution and coking rate were investigated. The optimum reaction conditions were 19 MPa, 440 ℃ and 300 mg/kg of catalyst addition. Under these conditions, the naphtha yield is 24.47%, the diesel fraction yield is 49.71%, and the coking rate is 1.32%.
  • loading
  • [1]
    马宝岐, 任沛建, 杨占彪, 王树宽.煤焦油制燃料油品[M].北京:化学工业出版社, 2011. http://www.bookask.com/book/974904.html

    MA Bao-qi, REN Pei-jian, YANG Zhan-biao, WANG Shu-kuan. Preparation of Fuel Oil from Coal Tar[M]. Beijing: Chemical Industry Press, 2011. http://www.bookask.com/book/974904.html
    [2]
    刘贞贞, 方梦祥, 马帅, 骆仲泱. NiMoP/γ-Al2O3催化剂的煤焦油加氢性能研究[J].燃料化学学报, 2016, 44(5): 579-586. doi: 10.3969/j.issn.0253-2409.2016.05.010

    LIU Zhen-zhen, FANG Meng-xiang, MA Shuai, LUO Zhong-yang. Hydrogenation of coal tar on NiMoP/γ-Al2O3 catalyst[J]. J Fuel Chem Technol, 2016, 44(5): 579-586. doi: 10.3969/j.issn.0253-2409.2016.05.010
    [3]
    KAN T, WANG H Y, HE H X, LI C X, ZHANG S J.Experimental study on two-stage catalytic hydroprocessing of middle-temperature coal tar to clean liquid fuels[J].Fuel, 2011, 90(11): 3404-3409. doi: 10.1016/j.fuel.2011.06.012
    [4]
    DALAMA K, STANISLAUS A. Comparison between deactivation pattern of catalysts in fixed-bed and ebullating-bed residue hydroprocessing units[J]. Chem Eng J, 2006, 120(1/2): 33-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4de1096d771484b131dff066ecd974c3
    [5]
    薛倩, 张雨, 刘名瑞, 张会成.煤焦油沸腾床加氢制备180号船用燃料油调合组分[J].石油炼制与化工, 2015, 46(10):88-92. doi: 10.3969/j.issn.1005-2399.2015.10.017

    XUE Qian, ZHANG Yu, LIU Ming-rui, ZHANG Hui-cheng.Preparation of 180# marine fuel oil by ebullated-bed hydrotreatment of medium temperature coal tar[J]. Pet Process Petrochem, 2015, 46(10): 88-92. doi: 10.3969/j.issn.1005-2399.2015.10.017
    [6]
    MENG Z H, YANG T, FANG X C. Experimental study of integrated ebullated-bed and fixed-bed for hydrotreating mid-low temperature coal tar to clean fuel[J].China Pet Process Petrochem Technol, 2016, 18(3):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsyjgysyhgjs201603001
    [7]
    吴乐乐, 李金璐, 邓文安, 张英红, 李传.煤焦油重组分甲苯不溶物结构组成及对悬浮床加氢裂化生焦的影响[J].燃料化学学报, 2015, 43(8):923-931. doi: 10.3969/j.issn.0253-2409.2015.08.004

    WU Le-le, LI Jin-lu, DENG Wen-an, ZHANG Ying-hong, LI Chuan. Structure of toluene insoluble coal tar heavy fraction and its relevance to the coking behavior in slurry-bed hydrocracking[J]. J Fuel Chem Technol, 2015, 43(8): 923-931. doi: 10.3969/j.issn.0253-2409.2015.08.004
    [8]
    KAN T, SUN X Y, WANG H Y, LI C S. Production of gasoline and diesel from coal tar via its catalytic hydrogenation in serial fixed beds[J]. Energy Fuels, 2012, 26(6): 3604-3611. doi: 10.1021/ef3004398
    [9]
    XUE F F, LI D, GUO Y T, LI X. Technical progress and the prospect of low-rank coal pyrolysis in china[J]. Energy Technol, 2017, 5(11): 1897-1907. doi: 10.1002/ente.201700203
    [10]
    MA Z Z, GAO N B, ZHANG L, LI A M. Modeling and simulation of oil sludge pyrolysis in a rotary kiln with a solid heat carrier: Considering the particle motion and reaction kinetics[J]. Energy Fuels, 2014, 28(9): 6029-6037. doi: 10.1021/ef501263m
    [11]
    曲旋, 张荣, 孙东凯, 毕继诚.固体热载体热解霍林河褐煤实验研究[J].燃料化学学报, 2011, 39(2): 85-89. doi: 10.3969/j.issn.0253-2409.2011.02.002

    QU Xuan, ZHANG Rong, SUN Dong-Kai, BI Ji-cheng.Experiment study on pyrolysis of Huolinhe lignite with solid heat carrier[J].J Fuel Chem Technol, 2011, 39(2): 85-89. doi: 10.3969/j.issn.0253-2409.2011.02.002
    [12]
    LIANG P, WANG Z F, BI J C. Simulation of coal pyrolysis by solid heat carrier in a moving-bed pyrolyzer[J]. Fuel, 2008, 87(4): 435-442. doi: 10.1016-j.fuel.2007.06.022/
    [13]
    张飏.低阶粉煤热解半焦规模化利用技术研究进展[J].煤质技术, 2018, 7(4):1-9. doi: 10.3969/j.issn.1007-7677.2018.04.001

    ZHANG Yang. Research progress of semi-cokelarge-scale utilization technology of low rank pulverized coal pyrolysis[J].Coal Quality Technol, 2018, 7(4):1-9. doi: 10.3969/j.issn.1007-7677.2018.04.001
    [14]
    LIANG P, WANG Z F, BI J C.Process characteristics investigation of simulated circulating fluidized bed combustion combined with coal pyrolysis[J]. Fuel Process Technol, 2007, 88(1):23-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0e1baf3872ed09e492cf5a54946133e5
    [15]
    GENG C C, LI S Y, LIU S H, HOU J L. Flash pyrolysis of coal with solid heat carrier in a fluidized bed[J]. Adv Mater Res, 2014, 953/954: 1153-1156. https://www.researchgate.net/publication/271981062_Flash_Pyrolysis_of_Coal_with_Solid_Heat_Carrier_in_a_Fluidized_Bed
    [16]
    WANG Q H, ZHANG R, LUO Z Y, FANG M X. Effects of pyrolysis atmosphere and temperature on coal char characteristics and gasification reactivity[J]. Energy Technol, 2016, 4(4): 543-550. doi: 10.1002/ente.201500366
    [17]
    YE C, WANG Q H, LUO Z Y, XIE G L, JIN K, MUHTAR S, CEN K F. Characteristics of coal partial gasification on a circulating fluidized bed reactor[J]. Energy Fuels, 2017, 31(3): 2557-2564. doi: 10.1021/acs.energyfuels.6b02889
    [18]
    JIA X, WANG Q H, CEN K F, CHEN L M. An experimental study of CaSO4 decomposition during coal pyrolysis[J]. Fuel, 2016, 163: 157-165. doi: 10.1016/j.fuel.2015.09.054
    [19]
    GUO Z H, WANG Q H, FANG M X, LUO Z Y, CEN K F. Thermodynamic and economic analysis of polygeneration system integrating atmospheric pressure coal pyrolysis technology with circulating fluidized bed power plant[J]. Appl Energy, 2014, 113(1): 1301-1314. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f06ddd716b4f251a3a25d3ac9a0a93ac
    [20]
    吴青.悬浮床加氢裂化——劣质重油直接深度高效转化技术[J].炼油技术与工程, 2014, 44(2): 1-9. doi: 10.3969/j.issn.1002-106X.2014.02.001

    WU Qing. Suspended-bed hydrocracking process——a deep high efficiency conversion process in rapid development for processing low-quality heavy oils[J]. Pet Refin Eng, 2014, 44(2): 1-9. doi: 10.3969/j.issn.1002-106X.2014.02.001
    [21]
    周家顺, 邓文安, 梁士昌, 刘东, 阙国和.渣油悬浮床加氢裂化与固定床加氢脱硫工艺的比较[J].炼油技术与工程, 2001, 31(2): 14-17. doi: 10.3969/j.issn.1002-106X.2001.02.004

    ZHOU Jia-shun, DENG Wen-an, LIANG Shi-chang, LIU Dong, QUE Guo-he. Comparison between suspended bed hydrocracking and fixed bed hydro-desulfurizing[J]. Pet Refin Eng, 2001, 31(2): 14-17. doi: 10.3969/j.issn.1002-106X.2001.02.004
    [22]
    BAKER M A, GILMORE R, LENARDI C, GISSLER W. XPS investigation of preferential sputtering of S from MoS2 and determination of MoSx stoichiometry from Mo and S peak positions[J]. Appl Surf Sci, 1999, 150(1/4): 255-262.
    [23]
    刘东, 张继昌, 赵英男, 阙国和.渣油悬浮床加氢分散型Mo催化剂硫化程度的XPS分析[J].石油学报(石油加工), 2007, 23(5): 33-37. doi: 10.3969/j.issn.1001-8719.2007.05.006

    LIU Dong, ZHANG Ji-chang, ZHAO Ying-nan, QUE Guo-he.XPS study on the sulfurization of dispersed Mo catalyst for slurry-bed hydroprocessing of residue[J]. Acta Pet Sin(Pet Process Sect), 2007, 23(5): 33-37. doi: 10.3969/j.issn.1001-8719.2007.05.006
    [24]
    WINTERBOTTOM J M, KHAN Z, RAYMAHASAY S, KNIGHT G. A comparison of triglyceride oil hydrogenation in a downflow bubble column using slurry and fixed bed catalysts[J]. J Appl Chem Biotechnol, 2000, 75(11): 1015-1025. doi: 10.1002/1097-4660(200011)75:11<1015::AID-JCTB304>3.0.CO;2-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (125) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return