Volume 47 Issue 9
Sep.  2019
Turn off MathJax
Article Contents
LI Shu-na, ZHU Gang, SHI Qi, DU Wei, ZHU Hua-qing, WANG Rui-yi, LI Zhi-kai, ZHANG Ya-gang. Performance of CO preferential oxidation of CeO2-NiO nanorod catalyst in H2-rich stream[J]. Journal of Fuel Chemistry and Technology, 2019, 47(9): 1111-1119.
Citation: LI Shu-na, ZHU Gang, SHI Qi, DU Wei, ZHU Hua-qing, WANG Rui-yi, LI Zhi-kai, ZHANG Ya-gang. Performance of CO preferential oxidation of CeO2-NiO nanorod catalyst in H2-rich stream[J]. Journal of Fuel Chemistry and Technology, 2019, 47(9): 1111-1119.

Performance of CO preferential oxidation of CeO2-NiO nanorod catalyst in H2-rich stream

Funds:

the National Natural Science Foundation of China 51704240

the National Natural Science Foundation of China 21703276

the National Natural Science Foundation of China 51602253

the Special Natural Science Foundation of Science and Technology Bureau of Xi′an City 2017CGWL24

the Special Natural Science Foundation of Science and Technology Bureau of Xi′an City 2017CGWL10

the Special Natural Science Foundation of Science and Technology Bureau of Xi′an City 2019KJWL08

the Special Natural Science Foundation of Science and Technology Bureau of Xi′an City 2019KJWL09

the Special Natural Science Foundation of Science and Technology Bureau of Xi′an City 2016CXWL08

Tianyuan Open Fund of the Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province tywl2019-08

More Information
  • Corresponding author: ZHU Hua-qing, E-mail: lishuna165@126.com; ZHANG Ya-gang, E-mail: zhhq@sxicc.ac.cn, zhangyg04@126.com
  • Received Date: 2019-04-19
  • Rev Recd Date: 2019-06-28
  • Available Online: 2021-01-23
  • Publish Date: 2019-09-10
  • A series of nanorod CeO2(x)-NiO composite oxides catalysts with different Ce/Ni molar ratios have been synthesized by hydrothermal method. Their morphology and structure were characterized by N2 sorption-desorption, XRD, TEM, Raman spectra, H2-TPR and XPS. The effects of Ce/Ni molar ratio on the morphology and catalytic activity of CeO2(x)-NiO composite oxides catalysts for CO preferential oxidation (CO PROX) in hydrogen-rich stream were studied. TEM results indicate that nanorod CeO2(x)-NiO composite oxides catalysts with different sizes can be obtained by adjusting Ce/Ni molar ratio. H2-TPR results show that introduction of NiO into CeO2 enhance the redox ability of CeO2(x)-NiO composite oxides catalysts. Raman spectra and XPS results indicate that CeO2(x)-NiO composite oxides catalysts with low nickel content have much more active oxygen species and oxygen vacancies, which are beneficial to improve its catalytic performance. CeO2(0.89)-NiO nanorod catalysts with low nickel content exhibits the highest activity and CO2 selectivity, the CO conversion is 100% and the CO2 selectivity is about 52% in the reaction temperature range of 170-220 ℃ for CO PROX in hydrogen-rich stream.
  • loading
  • [1]
    王芳, 吕功煊.助剂改性对贵金属催化剂CO选择氧化活性中心的影响[J].化学进展, 2010, 22(8):1538-1549. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxjz201008004

    WANG Fang, LÜ Gong-xuan. Influence of promoters on active centers over nobel metal catalysts for CO selective oxidation[J]. Prog Chem, 2010, 22(8):1538-1549. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxjz201008004
    [2]
    HORNÉS A, HUNGRÍA A B, BERA P, LÓPEZ CÁMARA A, FERNÁNDEZ-GARCÍA M, MARTÍNEZ-ARIAS A, BARRIO L, ESTRELLA M, ZHOU G, FONSECA J J, HANSON J C, RODRIGUEZ J A. Inverse CeO2/CuO catalyst as an alternative to classical direct configurations for preferential oxidation of CO in hydrogen-rich stream[J]. J Am Chem Soc, 2010, 132(1):34-35. doi: 10.1021/ja9089846
    [3]
    ZHU H Q, QIN Z F, SHAN W J, SHEN W J, WANG J G. Low-temperature oxidation of CO over Pd/CeO2-TiO2 catalysts with different pretreatments[J]. J Catal, 2005, 233(1):41-50. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5565d26f854735e2b2155f31282225c6
    [4]
    BAO H Z, CHEN X, FANG J, JIANG Z Q, HUANG W X. Structure-activity relation of Fe2O3-CeO2 composite catalysts in CO oxidation[J]. Catal Lett, 2018, 125(1/2):160-167. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=60f22992be92c9a728afe83567b658d5
    [5]
    LIN S J, SU G J, ZHENG M H, JI D K, JIA M K, LIU Y X. Synthesis of flower-like Co3O4-CeO2 composite oxide and its application to catalytic degradation of 1, 2, 4-trichlorobenzene[J]. Appl Catal B:Environ, 2012, 123/124:440-447. doi: 10.1016/j.apcatb.2012.05.011
    [6]
    AKANDE A J, IDEM R O, DALAI A K. Synthesis, characterization and performance evaluation of Ni/Al2O3 catalysts for reforming of crude ethanol for hydrogen production[J]. Appl Catal A:Gen, 2005, 287(2):159-175. doi: 10.1016/j.apcata.2005.03.046
    [7]
    MARIÑO F, CERRELLA E, DUHALDE S, JOBBAGY M, LABORDE M. Hydrogen from steam reforming of ethanol:Characterization and performance of copper-nickel supported catalysts[J]. Int J Hydrogen Energy, 1998, 23(12):1095-1101. doi: 10.1016/S0360-3199(97)00173-0
    [8]
    SHAN W J, LUO M F, YING P L, SHEN W J, LI C. Reduction property and catalytic activity of Ce1-xNixO2 mixed oxide catalysts for CH4 oxidation[J]. Appl Catal A:Gen, 2003, 246(1):1-9. doi: 10.1016/S0926-860X(02)00659-2
    [9]
    LIU Y M, WANG L C, CHEN M, XU J, CAO Y, HE H Y, FAN K N. Highly selective Ce-Ni-O catalysts for efficient low temperature oxidative dehydrogenation of propane[J]. Catal Lett, 2009, 130(3/4):350-354. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=34060f1b0142b1983d30f407eb9b7dd6
    [10]
    ZHONG L S, HU J S, CAO A M, LIU Q, SONG W G, WAN L J. 3D flowerlike ceria micro/nanocomposite structure and its application for water treatment and CO removal[J]. Chem Mater, 2007, 19(7):1648-1655. doi: 10.1021/cm062471b
    [11]
    LI T Y, XIANG G L, ZHANG J, WANG X. Enhanced catalytic performance of assembled ceria necklace nanowires by Ni doping[J]. Chem Commun, 2011, 47(21):6060-6062. doi: 10.1039/c1cc11547b
    [12]
    ZHANG D S, FU H X, SHI L Y, PAN C S, LI Q, CHU Y L, YU W J. Synthesis of CeO2 nanorods via ultrasonication assisted by polyethylene glycol[J]. Inorg Chem, 2007, 46(7):2446-2451. doi: 10.1021/ic061697d
    [13]
    LI C R, SUN Q T, LU N P, CHEN B Y, DONG W Y. A facile route for the fabrication of CeO2 nanosheets via controlling the morphology of CeOHCO3 precursors[J]. J Cryst Growth, 2012, 343(1):95-100. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1a7175ba95f73fb57caab45c589265ea
    [14]
    HU F Y, CHEN J J, PENG Y, SONG H, LI K Z, LI J H. Novel nanowire self-assembled hierarchical CeO2 microspheres for low temperature toluene catalytic combustion[J]. Chem Eng J, 2018, 331:425-434. doi: 10.1016/j.cej.2017.08.110
    [15]
    ZHOU K B, WANG X, SUN X M, PENG Q, LI Y D. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes[J]. J Catal, 2005, 229(1):206-212. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a50b9779b191d19a996ddce2039b807d
    [16]
    SI R, FLYTZANI-STEPHANOPOULOS M. Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction[J]. Angew Chem Int Ed, 2008, 47(15):2884-2887. doi: 10.1002/anie.200705828
    [17]
    MAITARAD P, HAN J, ZHANG D, SHI L, NAMUANGRUK S, RUNGROTMONGKOL T. Structure-activity relationships of NiO on CeO2 nanorods for the selective catalytic reduction of NO with NH3:Experimental and DFT studies[J]. J Phys Chem C, 2014, 118(118):9612-9620. https://www.researchgate.net/publication/262188283_Structure-Activity_Relationships_of_NiO_on_CeO_2_Nanorods_for_the_Selective_Catalytic_Reduction_of_NO_with_NH_3_Experimental_and_DFT_Studies
    [18]
    ZHANG X, HOUSE S D, TANG Y, NGUYEN L, LI Y, OPALADE A A, YANG J C, SUN Z, FENG TAO F. Complete oxidation of methane on NiO nanoclusters supported on CeO2 nanorods through synergistic effect[J]. ACS Sustainable Chem Eng, 2018, 6(5):6467-6477. doi: 10.1021/acssuschemeng.8b00234
    [19]
    TANG C J LI J C, YAO X J, SUN J F, CAO Y, ZHANG L, GAO F, DENG Y, DONG L. Mesoporous NiO-CeO2 catalysts for CO oxidation:Nickel content effect and mechanism aspect[J]. Appl Catal A:Gen, 2015, 494:77-86. doi: 10.1016/j.apcata.2015.01.037
    [20]
    李树娜, 宋佩, 张金丽, 贺小霞, 解一昕, 张亚刚, 王瑞义, 李志凯, 朱华青. CeO2-MnOx催化剂形貌对低浓度甲烷催化燃烧反应性能的影响[J].燃料化学学报, 2018, 46(5):615-624. doi: 10.3969/j.issn.0253-2409.2018.05.015

    LI Shu-na, SONG Pei, ZHANG Jin-li, HE Xiao-xia, XIE Yi-xin, ZHANG Ya-gang, WANG Rui-yi, LI Zhi-kai, ZHU Hua-qing. Morphological effect of CeO2-MnOx catalyst on their catalytic performance in lean methane combustion[J]. J Fuel Chem Technol, 2018, 46(5):615-624. doi: 10.3969/j.issn.0253-2409.2018.05.015
    [21]
    LI S N, ZHU H Q, QIN Z F, WANG G F, ZHANG Y G, WU Z W, LI Z K, CHEN G, DONG W W, WU Z H, ZHENG L R, ZHANG J, HU T D, WANG J G. Morphologic effects of nano CeO2-TiO2 on the performance of Au/CeO2-TiO2 catalysts in low-temperature CO oxidation[J]. Appl Catal B:Environ, 2014, 144(2):498-506. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0df82c10c28f8fe7ecf202c8e8090c7c
    [22]
    孙敬方, 葛成艳, 姚小江, 曹原, 张雷, 汤常金, 董林.固相浸渍法制备NiO/CeO2催化剂及其在CO氧化反应中的应用[J].物理化学学报, 2013, 29(11):2451-2458. doi: 10.3866/PKU.WHXB201309041

    SUN Jing-fang, GE Cheng-yan, YAO Xiao-jiang, CAO Yuan, ZHANG Lei, TANG Chang-jin, DONG Lin. Preparation of NiO/CeO2 catalysts by solid state impregnation and their application in CO oxidation[J]. Acta Phys-Chim Sin, 2013, 29(11):2451-2458. doi: 10.3866/PKU.WHXB201309041
    [23]
    BENJARAM M R, ATAULLAH K, YUSUKE Y, TETSUHIKO K, STÉPHANE L, JEAN-CLAUDE V. Structural characterization of CeO2-MO2 (M=Si4+, Ti4+, and Zr4+) mixed oxides by Raman spectroscopy, X-ray photoelectron spectroscopy, and other techniques[J]. J Phys Chem B, 2003, 107(41):11475-11484. doi: 10.1021/jp0358376
    [24]
    NI X M, ZHAO Q B, ZHOU F, ZHENG H G, CHENG J, LI B B. Synthesis and characterization of NiO strips from a single source[J]. J Cryst Growth, 2006, 289(1):299-302. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f3ac569992f605a12f3c68ef5f46b622
    [25]
    MAHAMMADUNNISA Sk, MANOJ K, LINGAIAH N, SUBRAHMANYAM C. NiO/Ce1-xNixO2-δ as an alternative to noble metal catalysts for CO oxidation[J]. Catal Sci Technol, 2013, 3(3):730-736. doi: 10.1039/C2CY20641B
    [26]
    SOLSONA B, CONCEPCIÓN P, HERNÁNDEZ S, DENJAMIN B, LÓPEZ NIETO J. Oxidative dehydrogenation of ethane over NiO-CeO2 mixed oxides catalysts[J]. Catal Today, 2012, 180(1):51-58. doi: 10.1016/j.cattod.2011.03.056
    [27]
    ŚWIATOWSKA J, LAIR V, PEREIRA-NABAIS C, COTE G, MARCUS P, CHAGNES A. XPS, XRD and SEM characterization of a thin ceria layer deposited onto graphite electrode for application in lithium-ion batteries[J]. Appl Surf Sci, 2011, 257(21):9110-9119. doi: 10.1016/j.apsusc.2011.05.108
    [28]
    BEHZAD N, MEHRAN R, EBRAHIM N. Preparation of highly active and stable NiO-CeO2 nanocatalysts for CO selective methanation[J]. Int J Hydrogen Energy, 2015, 40(27):8539-8547. doi: 10.1016/j.ijhydene.2015.04.127
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (409) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return