Volume 47 Issue 11
Nov.  2019
Turn off MathJax
Article Contents
ZHANG Zhi-min, ZHANG Cheng-xiang, AN Kang, LIU Qiang, ZHANG Si-ran, LIU Yuan. Preparation of La-Ce oxide-modified platinum-cobalt nano-bimetallic catalysts with perovskite-type composite oxides as precursors and their performance in CO oxidation[J]. Journal of Fuel Chemistry and Technology, 2019, 47(11): 1357-1367.
Citation: ZHANG Zhi-min, ZHANG Cheng-xiang, AN Kang, LIU Qiang, ZHANG Si-ran, LIU Yuan. Preparation of La-Ce oxide-modified platinum-cobalt nano-bimetallic catalysts with perovskite-type composite oxides as precursors and their performance in CO oxidation[J]. Journal of Fuel Chemistry and Technology, 2019, 47(11): 1357-1367.

Preparation of La-Ce oxide-modified platinum-cobalt nano-bimetallic catalysts with perovskite-type composite oxides as precursors and their performance in CO oxidation

Funds:

the Natural Science Foundation of China 21872101

the Natural Science Foundation of China 21576192

Science and Technology Program of Tianjin, China 18ZXSZSF00070

More Information
  • Corresponding author: ZHANG Si-ran, E-mail:siran@tju.edu.cn; LIU Yuan, Tel:13702112319, E-mail:yuanliu@tju.edu.cn
  • Received Date: 2019-07-11
  • Rev Recd Date: 2019-09-17
  • Available Online: 2021-01-23
  • Publish Date: 2019-11-10
  • A new scheme for constructing composite catalyst composed of oxide-modified bimetallic nanoparticles was proposed, where perovskite-type oxide (PTO) is utilized to confine multifold metal ions in the perovskite crystal lattice. With a perovskite-type oxide (PTO) of La1-yCeyCo0.87Pt0.13O3 loaded on large surface area SiO2 as the precursor, where the La, Ce, Co and Pt ions were uniformly mixed and confined in the PTO crystallites, a series of Pt-Co/La-Ce-O/SiO2 catalysts were prepared through reduction. The Pt-Co/La-Ce-O/SiO2 catalysts were characterized by nitrogen physisorption, XRD, H2-TPR and TEM; their catalytic performance in CO oxidation was investigated. The results indicate that La-Ce-O-Pt-Co clusters are constructed on the SiO2 surface, forming platinum-cobalt nano-bimetallic particles after reduction; the modification of Pt with Co can enhance the catalytic activity and the addition of Ce can further improve the catalytic performance in CO oxidation. The La0.8Ce0.2Co0.87Pt0.13O3/SiO2 catalyst with y=0.2 (representing the Ce content) exhibits high activity in CO oxidation; over it, a complete conversion of CO can be achieved at 120℃. The La0.8Ce0.2Co0.87Pt0.13O3/SiO2 catalyst performs well for CO oxidation even in the presence of 15% (volume ratio) H2O and 12.5% (volume ratio) CO2. Moreover, the oxide-modified platinum-cobalt nano-bimetallic catalysts display excellent stability with high resistance against sintering.
  • loading
  • [1]
    SCHUBERT M M, HACKENBERG S, VEEN A C V, MUHLER M, PLZAK V, BEHM R J. CO oxidation over supported gold catalysts-"Inert" and "active" support materials and their role for the oxygen supply during reaction[J]. J Catal, 2001, 197(1):113-122. doi: 10.1006/jcat.2000.3069
    [2]
    EINAGA H, NASU Y, ODA M, SAITO H. Catalytic performances of perovskite oxides for CO oxidation under microwave irradiation[J]. Chem Eng J, 2016, 283:97-104. doi: 10.1016/j.cej.2015.07.051
    [3]
    NURIA L, NØRSKOV J K. Catalytic CO oxidation by a gold nanoparticle:A density functional study[J]. J Am Chem Soc, 2002, 124(38):11262-11263. doi: 10.1021/ja026998a
    [4]
    IMBIHL R, COX M P, ERTL G, MÜLLER H, BRENIG W. Kinetic oscillations in the catalytic CO oxidation on Pt(100):Theory[J]. J Chem Phys, 1987, 87(1):742-749. doi: 10.1001/jama.297.21.2381
    [5]
    CAIXIA X, JIXIN S, XIAOHONG X, PENGPENG L, HONGJUAN Z, FANG T, YI D. Low temperature CO oxidation over unsupported nanoporous gold[J]. J Am Chem Soc, 2007, 129(1):42-43. doi: 10.1021/ja0675503
    [6]
    KUNG H H, KUNG M C, COSTELLO C K. Supported Au catalysts for low temperature CO oxidation[J]. J Catal, 2003, 216(1/2):425-432. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_219cebef5929c1aa6cc35d6a2921a6d8
    [7]
    BOTAO Q, AIQIN W, XIAOFENG Y, ALLARD L F, ZHENG J, YITAO C, JINGYUE L, JUN L, TAO Z. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nat Chem, 2011, 3(8):634-641. doi: 10.1038/nchem.1095
    [8]
    HENDRIKSEN B L M, FRENKEN J W M. CO oxidation on Pt(110):Scanning tunneling microscopy inside a high-pressure flow reactor[J]. Phys Rev Lett, 2002, 89(4):046101. doi: 10.1103/PhysRevLett.89.046101
    [9]
    WANG C, LI B, LIN H, YUAN Y. Carbon nanotube-supported Pt-Co bimetallic catalysts for preferential oxidation of CO in a H2-rich stream with CO2 and H2O vapor[J]. J Power Sources, 2012, 202:200-208. doi: 10.1016/j.jpowsour.2011.11.044
    [10]
    XU H, FU Q, GUO X, BAO X. Architecture of Pt-Co bimetallic catalysts for catalytic CO oxidation[J]. ChemCatChem, 2012, 4(10):1645-1652. doi: 10.1002/cctc.201200255
    [11]
    SNYTNIKOV P V, YUSENKO K V, KORENEV S V, SHUBIN Y V, SOBYANIN V A. Co-Pt bimetallic catalysts for the selective oxidation of carbon monoxide in hydrogen-containing mixtures[J]. Kinet Catal, 2007, 48(2):276-281. doi: 10.1134/S0023158407020127
    [12]
    BERA P, GAYEN A, HEGDE M S, LALLA N P, ARENA F. Promoting effect of CeO2 in combustion synthesized Pt/CeO2 catalyst for CO oxidation[J]. J Phys Chem B, 2003, 107(25):6122-6130. doi: 10.1021/jp022132f
    [13]
    AVAKYAN L A, KOLPACHEVA N A, PARAMONOVA E V, SINGH J, HARTFELDER U, BOKHOVEN J A V, BUGAEV L A. Evolution of the atomic structure of ceria-supported platinum nanocatalysts:Formation of single layer platinum oxide and Pt-O-Ce and Pt-Ce linkages[J]. J Phys Chem C, 2016, 120(49):28057-28066. doi: 10.1021/acs.jpcc.6b09824
    [14]
    SURENDAR M, SAGAR T V, RAVEENDRA G, ASHWANI KUMAR M, LINGAIAH N, RAMA RAO K S, SAI PRASAD P S. Pt doped LaCoO3 perovskite:A precursor for a highly efficient catalyst for hydrogen production from glycerol[J]. Int J Hydrogen Energy, 2016, 41(4):2285-2297. doi: 10.1016/j.ijhydene.2015.12.075
    [15]
    ZHAO L, HAN T, WANG H, ZHANG L, LIU Y. Ni-Co alloy catalyst from LaNi1-xCoxO3 perovskite supported on zirconia for steam reforming of ethanol[J]. Appl Catal B:Environ, 2016, 187:19-29. doi: 10.1016/j.apcatb.2016.01.007
    [16]
    GONG D, LI S, GUO S, TANG H, WANG H, LIU Y. Lanthanum and cerium co-modified Ni/SiO2 catalyst for CO methanation from syngas[J]. Appl Surf Sci, 2018, 434:351-364. doi: 10.1016/j.apsusc.2017.10.179
    [17]
    SUN S, YANG L I, PANG G, FENG S. Surface properties of Mg doped LaCoO3 particles with large surface areas and their enhanced catalytic activity for CO oxidation[J]. Appl Catal A:Gen, 2011, 401(1/2):199-203. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1571118299214e235b1ad528e2f66701
    [18]
    LI S, TANG H, GONG D, MA Z, LIU Y. Loading Ni/La2O3 on SiO2 for CO methanation from syngas[J]. Catal Today, 2017, 297:298-307. doi: 10.1016/j.cattod.2017.06.014
    [19]
    THOMMES M, KANEKO K, NEIMARK A V, OLIVIER J P, RODRIGUEZ-REINOSO F, ROUQUEROL J, SING K S W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure Appl Chem, 2015, 87(9/10):1051-1069. http://cn.bing.com/academic/profile?id=90760a340a671ebad24fef1d6782ecab&encoded=0&v=paper_preview&mkt=zh-cn
    [20]
    LEOFANTI G, PADOVAN M, TOZZOLA G, VENTURELLI B. Surface area and pore texture of catalysts[J]. Catal Today, 1998, 41(1):207-219. http://cn.bing.com/academic/profile?id=5b77958bb4f3d40165a0ac0a0fc7ec0e&encoded=0&v=paper_preview&mkt=zh-cn
    [21]
    SONG Z, SHI X, NING H, LIU G, ZHONG H, YUAN L. Loading clusters composed of nanoparticles on ZrO2 support via a perovskite-type oxide of La0.95Ce0.05Co0.7Cu0.3O3 for ethanol synthesis from syngas and its structure variation with reaction time[J]. Appl Surf Sci, 2017, 405:1-12. doi: 10.1016/j.apsusc.2017.02.003
    [22]
    BENJARA M, REDDY M, KATTA L, THRIMURTHULU G. Novel nanocrystalline Ce1-xLaxO2-δ(x=0.2) solid solutions:Structural characteristics and catalytic performance[J]. Chem Mater, 2010, 22(2):467-475. doi: 10.1021/cm100735n
    [23]
    JOB N, PEREIRA M F R, LAMBERT S, CABIAC A, DELAHAY G, COLOMER J F, MARIEN J, FIGUEIREDO J L, PIRARD J P. Highly dispersed platinum catalysts prepared by impregnation of texture-tailored carbon xerogels[J]. J Catal, 2006, 240(2):160-171. doi: 10.1016/j.jcat.2006.03.016
    [24]
    JERMWONGRATANACHAI T, JACOBS G, MA W, SHAFER W D, GNANAMANI M K, PEI G, KITIYANAN B, DAVIS B H, KLETTLINGER J L S, YEN C H. Fischer-tropsch synthesis:Comparisons between Pt and Ag promoted Co/Al2O3 catalysts for reducibility, local atomic structure, catalytic activity, and oxidation-reduction (OR) cycles[J]. Appl Catal A:Gen, 2013, 464(6):165-180.
    [25]
    FANG C, ZHONG H, WEI Y, WANG J, ZHANG S, ZHANG L, LIU Y. Highly dispersed Pt species with excellent stability and catalytic performance by reducing a perovskite-type oxide precursor for CO oxidation[J]. Trans Tianjin Univ, 2018, 24(6):547-554. doi: 10.1007/s12209-018-0175-1
    [26]
    GONG D D, LI S S, GUO S X, TANG H G, WANG H, LIU Y. Lanthanum and cerium co-modified Ni/SiO2 catalyst for CO methanation from syngas[J]. Appl Surf Sci, 2018, 434:351-364. doi: 10.1016/j.apsusc.2017.10.179
    [27]
    WANG T, XING J Y, ZHU L, JIA A P, WANG Y J, LU J Q, LUO M F. CO oxidation over supported Pt/CrxFe2-xO3 catalysts and their good tolerance to CO2 and H2O[J]. Appl Catal B:Environ, 2019, 245:314-324. doi: 10.1016/j.apcatb.2018.12.054
    [28]
    DENG Y, WANG T, ZHU L, JIA A P, LU J Q, LUO M F. Enhanced performance of CO oxidation over Pt/CuCrOx catalyst in the presence of CO2 and H2O[J]. Appl Surf Sci, 2018, 442:613-621. doi: 10.1016/j.apsusc.2018.02.099
    [29]
    WANG H F, KAVANAGH R, GUO Y L, GUO Y, LU G Z, HU P. Structural origin:Water deactivates metal oxides to CO oxidation and promotes low-temperature CO oxidation with metals[J]. Angew Chem Int Ed, 2012, 51(27):6657-6661. doi: 10.1002/anie.201108981
    [30]
    JIN Y, SUN G, XIONG F, DING L, HUANG W. Water-activated lattice oxygen in FeO(111) islands for low-temperature oxidation of CO at Pt-FeO interface[J]. J Phys Chem C, 2016, 120(18):9845-9851. doi: 10.1021/acs.jpcc.6b02256
    [31]
    SINGHANIA A, GUPTA S M. Nanocrystalline ZrO2 and Pt-doped ZrO2 catalysts for low-temperature CO oxidation[J]. Beilstein J Nanotechnol, 2017, 8(1):264-271. doi: 10.3762/bjnano.8.29
    [32]
    AVGOUROPOULOS G, IOANNIDES T, PAPADOPOULOU C, BATISTA J, HOCEVAR S, MATRALIS H K. A comparative study of Pt/γ-Al2O3, Au/α-Fe2O3 and CuO-CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen[J]. Catal Today, 2002, 75(1/4):157-167. doi: 10.1016/S0920-5861(02)00058-5
    [33]
    LI S, LIU G, LIAN H, JIA M, ZHAO G, JIANG D, ZHANG W. Low-temperature CO oxidation over supported Pt catalysts prepared by colloid-deposition method[J]. Catal Commun, 2008, 9(6):1045-1049. doi: 10.1016/j.catcom.2007.10.016
    [34]
    EPLING W S, CHEEKATAMARLA P K, LANE A M. Reaction and surface characterization studies of titania-supported Co, Pt and Co/Pt catalysts for the selective oxidation of CO in H2 -containing streams[J]. Chem Eng J, 2003, 93(1):61-68. doi: 10.1016/S1385-8947(02)00109-2
    [35]
    ROH H S, POTDAR H S, JUN K W, HAN S Y, KIM J W. Low temperature selective CO oxidation in excess of H2 over Pt/Ce-ZrO2 catalysts[J]. Catal Lett, 2004, 93(3):203-207. doi: 10.1023/b:catl.0000017077.38760.1f
    [36]
    XU H, FU Q, YAO Y, BAO X. Highly active Pt-Fe bicomponent catalysts for CO oxidation in the presence and absence of H2[J]. Energy Environ Sci, 2012, 5(4):6313-6320. doi: 10.1039/C1EE02393D
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (90) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return