Volume 46 Issue 10
Oct.  2018
Turn off MathJax
Article Contents
XIE Yong-min, LI Jiang-lin, HOU Jin-xing, WU Pei-jia, LIU Jiang, LIU Qing-sheng. Direct use of coke in a solid oxide fuel cell[J]. Journal of Fuel Chemistry and Technology, 2018, 46(10): 1168-1174.
Citation: XIE Yong-min, LI Jiang-lin, HOU Jin-xing, WU Pei-jia, LIU Jiang, LIU Qing-sheng. Direct use of coke in a solid oxide fuel cell[J]. Journal of Fuel Chemistry and Technology, 2018, 46(10): 1168-1174.

Direct use of coke in a solid oxide fuel cell

Funds:

the National Natural Science Foundation of China 51564019

More Information
  • Corresponding author: LIU Qing-sheng, Tel:+8615970132969, E-mail:397176537@qq.com
  • Received Date: 2018-05-15
  • Rev Recd Date: 2018-08-18
  • Available Online: 2021-01-23
  • Publish Date: 2018-10-10
  • Direct carbon solid oxide fuel cell (DC-SOFC) is a potential technology for generating electricity from solid carbon fuel with high conversion efficiency and low pollution. In this study, the use of industrial coke as a fuel for a direct carbon solid oxide fuel cell (DC-SOFC) was investigated. Tubular yttrium-stabilized zirconia (YSZ) electrolyte-supported solid oxide fuel cells (SOFCs) with a cermet of silver and gadolinium-doped ceria (Ag-GDC) as electrode material were fabricated. Raman spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy were applied to characterize the investigated coke fuels. It was observed that the coke fuel wa micron-sized particles with many structural defects, which favored the Boudouard reaction occurring in a DC-SOFC. A peak power density of 149 mW/cm2 at 850 ℃ was observed for pure coke fuel, and it improved to 217 mW/cm2 when a Fe-based catalyst was added to enhance the Boudouard reaction. The degradation performance of the DC-SOFC during a discharging test was analyzed according to the electrochemical characterization and emitted gas measurements. The performed test supported the feasibility of using coke as fuel in an all-solid-state DC-SOFC to generate electricity.
  • 本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http://www.sciencedirect.com/science/journal/18725813).
  • loading
  • [1]
    ZHAO Y, WANG S, DUAN L, LEI Y, CAO P, HAO J. Primary air pollutant emissions of coal-fired power plants in China:Current status and future prediction[J]. Atmos Environ, 2008, 42(36):8442-8452. doi: 10.1016/j.atmosenv.2008.08.021
    [2]
    CAO D, SUN Y, WANG G. Direct carbon fuel cell:Fundamentals and recent developments[J]. J Power Sources, 2007, 167(2):250-257. doi: 10.1016/j.jpowsour.2007.02.034
    [3]
    GIDDEY S, BADWAL S P S, KULKARNI A, MUNNINGS C. A comprehensive review of direct carbon fuel cell technology[J]. Prog Energy Combust, 2012, 38(3):360-399. doi: 10.1016/j.pecs.2012.01.003
    [4]
    GVR T M. Critical review of carbon conversion in "carbon fuel cells"[J]. Chem Rev, 2013, 113(8):6179-6206. doi: 10.1021/cr400072b
    [5]
    LIU J, ZHOU M Y, ZHANG Y P, LIU Z J, XIE Y M, CAI W Z, YU F Y, ZHOU Q, WANG X Q, NI M, LIU M L. Electrochemical oxidation of carbon at high temperature:Principles and applications[J]. Energy Fuels, 2017, 32(4):4107-4117. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_91595f011edcc3ebcbbdfdebefb4b875
    [6]
    NAKAGAWA N, ISHIDA M. Performance of an internal direct-oxidation carbon fuel cell and its evaluation by graphic exergy analysis[J]. Ind Eng Chem Res, 1988, 27(7):1181-1185. doi: 10.1021/ie00079a016
    [7]
    XIE Y M, TANG Y B, LIU J. A verification of the reaction mechanism of direct carbon solid oxide fuel cells[J]. J Solid State Electr, 2013, 17(1):121-127. doi: 10.1007/s10008-012-1866-5
    [8]
    TANG Y B, LIU J. Fueling solid oxide fuel cells with activated carbon[J]. Acta Phys Chim Sin, 2010, 26(5):1191-1194. http://en.cnki.com.cn/Article_en/CJFDTotal-WLHX201005003.htm
    [9]
    TANG Y B, LIU J. Effect of anode and boudouard reaction catalysts on the performance of direct carbon solid oxide fuel cells[J]. Int J Hydrogen Energy, 2010, 35(20):11188-11193. doi: 10.1016/j.ijhydene.2010.07.068
    [10]
    LIU R Z, ZHAO C H, LI J L, ZENG F R, WANG S R, WEN T L, WEN Z Y. A novel direct carbon fuel cell by approach of tubular solid oxide fuel cells[J]. J Power Sources, 2010, 195(2):480-482. doi: 10.1016/j.jpowsour.2009.07.032
    [11]
    WU Y Z, SU C, ZHANG C M, RAN R, SHAO Z P. A new carbon fuel cell with high power output by integrating with in situ catalytic reverse Boudouard reaction[J]. Electrochem Commun, 2009, 11(6):1265-1268. doi: 10.1016/j.elecom.2009.04.016
    [12]
    BAI Y H, LIU Y, TANG Y B, XIE Y M, LIU J. Direct carbon solid oxide fuel cell-a potential high performance battery[J]. Int J Hydrogen Energy, 2011, 36(15):9189-9194. doi: 10.1016/j.ijhydene.2011.04.171
    [13]
    YU F Y, ZHANG Y P, YU L, CAI W Z, YUAN L L, LIU J, LIU M L. All-solid-state direct carbon fuel cells with thin yttrium-stabilized-zirconia electrolyte supported on nickel and iron bimetal-based anodes[J]. Int J Hydrogen Energy, 2016, 41(21):9048-9058. doi: 10.1016/j.ijhydene.2016.04.063
    [14]
    CAI W Z, ZHOU Q, XIE Y M, LIU J, LONG G Q, CHENG S, LIU M L. A direct carbon solid oxide fuel cell operated on a plant derived biofuel with natural catalyst[J]. Appl Energy, 2016, 179:1232-1241. doi: 10.1016/j.apenergy.2016.07.068
    [15]
    ZHOU Q, CAI W Z, ZHANG Y P, LIU J, YUAN L L, YU F Y, WANG X Q, LIU M L. Electricity generation from corn cob char though a direct carbon solid oxide fuel cell[J]. Biomass Bioenergy, 2016, 91:250-258. doi: 10.1016/j.biombioe.2016.05.036
    [16]
    RADY A C, GIDDEY S, KULKARNI A, BADWAL S P S, BHATTACHARYA S. Direct carbon fuel cell operation on brown coal with a Ni-GDC-YSZ anode[J]. Electrochim Acta, 2015, 178:721-731. doi: 10.1016/j.electacta.2015.08.064
    [17]
    JIAO Y, ZHAO J H, AN W T, ZHANG L Q, SHA Y J, YANG G M, SHAO Z P, ZHU Z P, LI S D. Structurally modified coal char as a fuel for solid oxide-based carbon fuel cells with improved performance[J]. J Power Sources, 2015, 288:106-114. doi: 10.1016/j.jpowsour.2015.04.121
    [18]
    XU K, CHEN C, LIU H, TIAN Y, LI X, YAO H. Effect of coal based pyrolysis gases on the performance of solid oxide direct carbon fuel cells[J]. Int J Hydrogen Energy, 2014, 39:17845-17851 doi: 10.1016/j.ijhydene.2014.08.133
    [19]
    JIAO Y, TIAN W J, CHEN H L, SHI H G, YANG B B, LI C, SHAO Z P, ZHU Z P, LI S D. In situ catalyzed boudouard reaction of coal char for solid oxide-based carbon fuel cells with improved performance[J]. Appl Energy, 2015, 141:200-208. doi: 10.1016/j.apenergy.2014.12.048
    [20]
    XIE Y M, CAI W Z, XIAO J, TANG Y B, LIU J, LIU M L. Electrochemical gas-electricity cogeneration through direct carbon solid oxide fuel cells[J]. J Power Sources, 2015, 277:1-8. doi: 10.1016/j.jpowsour.2014.12.016
    [21]
    GUZMAN F, SINGH R, CHUANG S S C. Direct use of sulfur-containing coke on a Ni-yttria-stabilized zirconia anode solid oxide fuel cell[J]. Energy Fuels, 2011, 25(5):2179-2186. doi: 10.1021/ef1016363
    [22]
    XIE Y M, WANG X Q, LIU J, YU C L. Fabrication and performance of tubular electrolyte-supporting direct carbon solid oxide fuel cell by dip coating technique[J]. Acta Phys Chim Sin, 2017, 33(2):386-392. doi: 10.3866/PKU.WHXB201610104
    [23]
    LIU J, SU W H, LÜ Z, JI Y, PEI L, LIU W, HE T M. A rapid sealing method for solid oxide fuel cell using metal conductive adhesive: CN, 02133049.2[P]. 2002-09-25.
    [24]
    ZHANG L, XIAO J, XIE Y M, TANG Y B, LIU J, LIU M L. Behavior of strontium-and magnesium-doped gallate electrolyte in direct carbon solid oxide fuel cells[J]. J Alloy Compound, 2014, 608:272-277. doi: 10.1016/j.jallcom.2014.04.154
    [25]
    CAI W Z, LIU J, XIE Y M, XIAO J, LIU M L. An investigation on the kinetics of direct carbon solid oxide fuel cells[J]. J Solid State Electr, 2016, 20(8):2207-2216. doi: 10.1007/s10008-016-3216-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (109) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return