Volume 48 Issue 10
Oct.  2020
Turn off MathJax
Article Contents
ZHENG Wei, CHEN Jia-ling, GUO Li, ZHANG Wen-bo, ZHAO Hao-ran, WU Xiao-qin. Research progress of hydrothermal stability of metal-based zeolite catalysts in NH3-SCR reaction[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1193-1207.
Citation: ZHENG Wei, CHEN Jia-ling, GUO Li, ZHANG Wen-bo, ZHAO Hao-ran, WU Xiao-qin. Research progress of hydrothermal stability of metal-based zeolite catalysts in NH3-SCR reaction[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1193-1207.

Research progress of hydrothermal stability of metal-based zeolite catalysts in NH3-SCR reaction

Funds:

the National Natural Science Foundation of China 22002114

The Natural Science Foundation of Hubei Province 2018CFB361

The Wuhan Science and Technology Bureau 2018060401011311

More Information
  • Corresponding author: CHEN Jia-ling,Tel:027-87643502, E-mail:chenjialing@wust.edu.cn; WU Xiao-qin,Tel:027-87643502, E-mail:wuxiaoqin@wust.edu.cn
  • Received Date: 2020-08-04
  • Rev Recd Date: 2020-09-06
  • Available Online: 2021-01-23
  • Publish Date: 2020-10-10
  • Emission of NOx from stationary and mobile sources had caused many environmental problems. NH3 selective catalytic reduction technology (NH3-SCR) is one of the most effective technologies to eliminate NOx based on developing high-efficient catalysts. In this review, the catalytic activity for NH3-SCR, hydrothermal stability and deactivation mechanism of metal-based zeolite catalysts (mainly Cu- and Fe-based zeolite catalysts) employed in NH3-SCR were summarized. The main factors affecting the hydrothermal stability of Cu- or Fe-based zeolite catalysts in NH3-SCR, such as Si/Al ratio, zeolite topological structure, metal content, particle size and preparation methods of catalysts, were systematically reviewed. The modification approaches addressed in recent researches which could effectively improve the hydrothermal stability of metal-based zeolites in NH3-SCR, such as element modification using phosphorus, second active metal, alkali (earth) metal, and surface modification, were discussed. Hopefully, this review could provide a fundamental understanding of the deactivation behaviors of Cu- and Fe-based zeolite catalysts and pave the way towards the improvement of hydrothermal stability of zeolite catalysts in NH3-SCR.
  • loading
  • [1]
    ZHANG R D, LIU N, LEI Z G, CHEN B H. Selective transformation of various nitrogen-containing exhaust gases toward N2 over zeolite catalysts[J]. Chem Rev, 2016, 116(6):3658-3721. doi: 10.1021/acs.chemrev.5b00474
    [2]
    LI J H, CHANG H Z, MA L, HAO J M, YANG R T. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts-A review[J]. Catal Today, 2011, 175(1):147-156. http://www.sciencedirect.com/science/article/pii/S0920586111002434
    [3]
    SHAN W P, SONG H. Catalysts for the selective catalytic reduction of NOx with NH3 at low temperature[J]. Catal Sci Technol, 2015, 5(9):4280-4288. doi: 10.1039/C5CY00737B
    [4]
    BEALE A M, GAO F, LEZCANO-GONZALEZ I, PEDEN C H, SZANYI J. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials[J]. Chem Soc Rev, 2015, 44(20):7371-7405. doi: 10.1039/C5CS00108K
    [5]
    GUAN B, ZHAN Reggie, LIN H, ZHEN H. Review of state of the art technologies of selective catalytic reduction of NOx from diesel engine exhaust[J]. Appl Therm Eng, 2014, 66(1/2):395-414. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2cdcdc4b8f37de474afbaa45421a7749
    [6]
    BRANDENBERGER S, KROCHER O, TISSLER A, RODERIK A. The state of the art in selective catalytic reduction of NOx by ammonia using metal-exchanged zeolite catalysts[J]. Catal Rev, 2008, 50(4):492-531. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=277a26bc87ad6c96721f19cc69d98d90
    [7]
    PARK J H, PARK H J, BAIK J H, NAM I S, SHIN C H, LEE J H, CHO B K, OH S H. Hydrothermal stability of Cu/ZSM5 catalyst in reducing NO by NH3 for the urea selective catalytic reduction process[J]. J Catal, 2006, 240(1):47-57. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4f72f19d59c5af4fddcbfc8b430c6b33
    [8]
    UPAKUL D, LEZCANO-GONZALEZ I, WECKHUYSEN B M, BEALE A M. Local environment and nature of Cu active sites in zeolite-based catalysts for the selective catalytic reduction of NOx[J]. ACS Catal, 2013, 3(3):413-427. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=15a229f7fbb0a3614f4d8fecb9f4180a
    [9]
    ZHAO Y G, HU J, HUA L, SHUAI S J, WANG J X. Ammonia storage and slip in a urea selective catalytic reduction catalyst under steady and transient conditions[J]. Ind Eng Chem Res, 2011, 50(21):11863-11871. doi: 10.1021/ie201045w
    [10]
    MA L, CHENG Y S, CAVATAIO G, MCCABE R W. FU L X, LI J H. In situ DRIFTS and temperature-programmed technology study on NH3-SCR of NO over Cu-SSZ-13 and Cu-SAPO-34 catalysts[J]. Appl Catal B, 2014, 156/157:428-437. doi: 10.1016/j.apcatb.2014.03.048
    [11]
    GUO X Y, BARTHOLOMEW C, HECKER W, BAXTER L L. Effects of sulfate species on V2O5/TiO2 SCR catalysts in coal and biomass-fired systems[J]. Appl Catal B, 2009, 92(1/2):30-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=14af027ca4325869977c897c934d5b1a
    [12]
    JOHNSON T V. Review of diesel emissions and control[J]. Int J Engine Res, 2009, 10(5):275-285. doi: 10.1243/14680874JER04009
    [13]
    史安举. V2O5-WO3-TiO2体系改性NH3-SCR催化剂的催化活性及水热定性研究[D].天津: 天津大学, 2011.

    SHI An-ju. Study on catalytic activity and hydrothermal characterization of NH3-SCR catalyst modified by V2O5-WO3-TiO2 system[D]. Tianjin: Tianjin University, 2011.
    [14]
    崔洪丽.一步法合成不同铜含量Cu-SAPO-34分子筛及其NH3-SCR活性和水热稳定性研究[D].天津: 天津大学, 2016.

    CUI Hong-li. The NH3-SCR performance and hydrothermal stability of one-pot synthesized Cu-SAPO-34 catalysts with different copper contents[D]. Tianjin: Tianjin University, 2016.
    [15]
    ZHANG S G, ZHANG B L, LIU B, SUN S L. A review of Mn-containing oxide catalysts for low temperature selective catalytic reduction of NOx with NH3:reaction mechanism and catalyst deactivation[J]. RSC Adv, 2017, 7(42):26226-26242. doi: 10.1039/C7RA03387G
    [16]
    YU Y X, TAN W, AN D Q, TANG C J, ZOU W X, GE C Y, TONG Q, GAO F, SUN J F, DONG L. Activity enhancement of WO3 modified FeTiOx catalysts for the selective catalytic reduction of NOx by NH3[J]. Catal Today, 2019, In press. http://www.sciencedirect.com/science/article/pii/S1385894716305502
    [17]
    CHENG K, SONG W Y, CHENG Y, ZHENG H L, WANG L U, LIU J, ZHAO Z, WEI Y C. Enhancing the low temperature NH3-SCR activity of FeTiOx catalysts via Cu doping:a combination of experimental and theoretical study[J]. RSC Adv, 2018, 8:19301-19309. doi: 10.1039/C8RA02931H
    [18]
    YAO X J, CHEN L, CAO J, CHEN Y, TIAN M, YANG F M, SUN J F, TANG C J, DONG L. Enhancing the deNOx performance of MnOx/CeO2-ZrO2 nanorod catalyst for low-temperature NH3-SCR by TiO2 modification[J]. Chem Eng J, 2019, 369:46-56. doi: 10.1016/j.cej.2019.03.052
    [19]
    LI L L, TAN W, WEI X Q, FAN Z X, LIU A N, GUO K, MA K L, YU S H, GE C Y, TANG C J, DONG L. Mo doping as an effective strategy to boost low temperature NH3-SCR performance of CeO2/TiO2 catalysts[J]. Catal Commun, 2018, 114:10-14. doi: 10.1016/j.catcom.2018.05.015
    [20]
    YANG C, YANG J, JIAO Q R, ZHAO D, ZHANG Y X, LIU L, HU G, LI J L. Promotion effect and mechanism of MnOx doped CeO2 nano-catalyst for NH3-SCR[J]. Ceram Int, 2020, 46:4394-4401. doi: 10.1016/j.ceramint.2019.10.163
    [21]
    MENG Q N, CUI J N, WANG K, TANG Y F, ZHAO K, HUANG L. Facile preparation of hollow MnOx-CeO2 composites with low Ce content and their catalytic performance in NO oxidation[J]. Mol Catal, 2020, 493:111107-111116. doi: 10.1016/j.mcat.2020.111107
    [22]
    GAO F Y, TANG X L, YIH H, ZHAO S Z, WANG J G, SHI Y R, MENG X M. Novel Co- or Ni-Mn binary oxide catalysts with hydroxyl groups for NH3-SCR of NOx at low temperature[J]. Appl Surf Sci, 2018, 443:103-113. doi: 10.1016/j.apsusc.2018.02.151
    [23]
    YANG G, ZHAO H T, LUO X, SHI K Q, ZHAO H B, WANG W K, CHEN Q H, FAN H, WU T. Promotion effect and mechanism of the addition of Mo on the enhanced low temperature SCR of NOx by NH3 over MnOx/γ-Al2O3 catalysts[J]. Appl Catal B, 2019, 245:743-752. doi: 10.1016/j.apcatb.2018.12.080
    [24]
    喻成龙, 黄碧纯, 杨颖欣.分子筛应用于低温NH3-SCR脱硝催化剂的研究进展[J].华南理工大学学报, 2015, 43(3):143-151. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnlgdxxb201503021

    YU Chen-long, HUANG Bi-chun, YANG Yin-xin. Review on application of molecular sieve to denitration catalysts for low-temperature NH3-SCR[J]. J South China Univ Techno, 2015, 43(3):143-151. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnlgdxxb201503021
    [25]
    WANG A Y, WANG Y L, WALTER E D, WASHTON N M, GUO Y L, LU G Z, PEDEN C H F, GAO F. NH3-SCR on Cu, Fe and Cu + Fe exchanged beta and SSZ-13 catalysts:hydrothermal aging and propylene poisoning effects[J]. Catal Today, 2019, 320:91-99. doi: 10.1016/j.cattod.2017.09.061
    [26]
    MONTENEGRO G, ONORATI A. Urea-SCR technology for deNOx after treatment of diesel exhausts[M]. Springer New York Heidelberg Dordrecht London, 2014.
    [27]
    WANG A Y, WANG Y L, WALTER E D, KUKKADAPU R K, GUO Y L, Lu G Z, WEBER R S, WANG Y, PEDEN C H F, GAO F. Catalytic N2O decomposition and reduction by NH3 over Fe/Beta and Fe/SSZ-13 catalysts[J]. J Catal, 2018, 358:199-210. doi: 10.1016/j.jcat.2017.12.011
    [28]
    JOAQUIN P P, MANUEL S S. Structure and reactivity of metals in zeolite materials[M]. Springer Nature Switzerland, 2018.
    [29]
    KORHONEN S T, FICKEL D W, LOBO R F, WECKHUYSEN B M, BEALE A M. Isolated Cu2+ ions:active sites for selective catalytic reduction of NO[J]. Chem Comm, 2011, 47(2):800-802. doi: 10.1039/C0CC04218H
    [30]
    LOMACHENKO K A, BORFECCHIA E, NEGRI C, BERLIER G, LAMBERTI C, BEATO P, FALSIG H, BORDIGA S. The Cu-CHA deNOx catalyst in action:temperature-dependent NH3-SCR monitored by operando X-ray absorption and emission spectroscopies[J]. J Am Chem Soc, 2016, 138(37):12025-12028. doi: 10.1021/jacs.6b06809
    [31]
    BEALE A M, LEZCANO-GONZALEZ I, SLAWINSKI W A, SLAWINSKI W A, WRAGG D S. Correlation between Cu ion migration behaviour and deNOx activity in Cu-SSZ-13 for the standard NH3-SCR reaction[J]. Chem Comm, 2016, 52(36):6170-6173. doi: 10.1039/C6CC00513F
    [32]
    GAO F, WALTER E D, KARP E M, LUO J Y, RUSSELL G T, KWAK J H, JANOS S, PEDEN C H F. Structure-activity relationships in NH3-SCR over Cu-SSZ-13 as probed by reaction kinetics and EPR studies[J]. J Catal, 2013, 300:20-29. doi: 10.1016/j.jcat.2012.12.020
    [33]
    AEDERSEN C W, BERMHOOLM M, VENNESTROM P N, BLICHFELD A B, LUNDEGAARD L F, IVERSEN B B. Location of Cu2+ in CHA zeolite investigated by X-ray diffraction using the rietveld/maximum entropy method[J]. IUCrJ, 2014, 1:382-386. doi: 10.1107/S2052252514020181
    [34]
    PAOLUCCI, CHRISTOPHER, PAREKH A A, KHURANA, ISHANT, DI I, JOHN R, LI H, ALBARRACINl C, JONATAN D, SHIH, ARTHUR, ANGGARA, TRUNOJOYO, DELGASS, NICHOLAS W, MILLER, JEFFREY T, RIBEIRO, FABIO H, GOUNDER, RAJAMANI, SCHNEIDER, WILLIAM F. Catalysis in a cage:condition-dependent speciation and dynamics of exchanged Cu cations in SSZ-13 zeolites[J]. J Am Chem Soc, 2016, 138(18):6028-6048. doi: 10.1021/jacs.6b02651
    [35]
    GAO F, WASHTON N M, WANG Y L, KOLLAR M, SZANYI J, PEDEN C H F. Effects of Si/Al ratio on Cu/SSZ-13 NH3-SCR catalysts:implications for the active Cu species and the roles of Brønsted acidity[J]. J Catal, 2015, 331:25-38. doi: 10.1016/j.jcat.2015.08.004
    [36]
    SONG J, WANG Y L, WALTER E D, WASHTON N M, MEI D H, KOVARIK L, ENGELHARD M H, PRODINGER S, WANG Y, PADEN C H F, GAO F. Toward rational design of Cu/SSZ-13 selective catalytic reduction catalysts:implications from atomic-level understanding of hydrothermal stability[J]. ACS Catal, 2017, 7(12):8214-8227. doi: 10.1021/acscatal.7b03020
    [37]
    KHARAS K C C, HJROBOTA, LIU D J. Deactivation in Cu-ZSM-5 lean-burn catalysts[J]. Appl Catal B, 1993, 2(2/3):225-237. http://www.sciencedirect.com/science/article/pii/092633739380050N
    [38]
    YAN J Y, LEI G D, SSCHTER W M H, KUNG A H H. Deactivation of Cu/ZSM-5 catalysts for lean NOx reduction characterization of changes of Cu state and zeolite support[J]. J Catal, 1996, 161(1):43-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6ca988e3134d31636ab8c9c58133478f
    [39]
    VENNESTROM P N R, JANSSENS T V W, KUSTOV A, GRILL M, PUIG-MOLINA A, LUNDEGRRD L F, TIRUVALAM R R, CONCEPCION P, CORMA A. Influence of lattice stability on hydrothermal deactivation of Cu-ZSM-5 and Cu-IM-5 zeolites for selective catalytic reduction of NOx by NH3[J]. J Catal, 2014, 309:477-490. doi: 10.1016/j.jcat.2013.10.017
    [40]
    ZHAO H W, ZHAO Y N, LIU M K, LI X H, MA Y H, YONG X, CHEN H, LI Y D. Phosphorus modification to improve the hydrothermal stability of a Cu-SSZ-13 catalyst for selective reduction of NOx with NH3[J]. Appl Catal B, 2019, 252:230-239. doi: 10.1016/j.apcatb.2019.04.037
    [41]
    GAO F, SZANYI J. On the hydrothermal stability of Cu/SSZ-13 SCR catalysts[J]. Appl Catal A, 2018, 560:185-194. doi: 10.1016/j.apcata.2018.04.040
    [42]
    SU W, LI Z, PENG Y, LI J. Correlation of the changes in the framework and active Cu sites for typical Cu/CHA zeolites (SSZ-13 and SAPO-34) during hydrothermal aging[J]. Phys Chem Chem Phys, 2015, 17(43):29142-29149. doi: 10.1039/C5CP05128B
    [43]
    MAO Y, WANG Z Y, WANG H F, HU P. Understanding catalytic reactions over zeolites:a density functional theory study of selective catalytic reduction of NOx by NH3 over Cu-SAPO-34[J]. ACS Catal, 2016, 6(11):7882-7891. doi: 10.1021/acscatal.6b01449
    [44]
    CUI Y R, WANG Y L, WALTER E D, SZANJI J, WANG Y, GAO F. Influences of Na+ co-cation on the structure and performance of Cu/SSZ-13 selective catalytic reduction catalysts[J]. Catal Today, 2020, 339:233-240. doi: 10.1016/j.cattod.2019.02.037
    [45]
    GAO F, WANG Y L, WASHTON N M, KOLLAR M, SZANYI J, PEDEN C H F. Effects of alkali and alkaline earth cocations on the activity and hydrothermal stability of Cu/SSZ-13 NH3-SCR Catalysts[J]. ACS Catal, 2015, 5(11):6780-6791. doi: 10.1021/acscatal.5b01621
    [46]
    GAO F, ZHENG Y, KUKKADAPU R K, WANG Y L, WALTER E D, SCHWENZER B, SZANYI J, PEDEN C H F. Iron loading effects in Fe/SSZ-13 NH3-SCR catalysts:nature of the Fe ions and structure-function relationships[J]. ACS Catal, 2016, 6(5):2939-2954. doi: 10.1021/acscatal.6b00647
    [47]
    BRANDENBERRGER S, KROCHER O, TISSLER A, ALTHOFFl R. The determination of the activities of different iron species in Fe-ZSM-5 for SCR of NO by NH3[J]. Appl Catal B, 2010, 95(3/4):348-357. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=aa341da8d553df7b618a8f666b872f01
    [48]
    MARTIN H, JOSEF B M, GRUNWALDT J D, DAHL S. The role of monomeric iron during the selective catalytic reduction of NOx by NH3 over Fe-BEA zeolite catalysts[J]. Appl Catal B, 2009, 93(1/2):166-176. http://www.sciencedirect.com/science/article/pii/S0926337309003804
    [49]
    SHI X Y, LIU F D, SHAN W P, HE H. Hydrothermal deactivation of Fe-ZSM-5 prepared by different methods for the selective catalytic reduction of NOx with NH3[J]. Chinese J Catal, 2012, 33(2/3):454-464. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cuihuaxb201203011
    [50]
    LIN Q J, Feng ENG X, ZHANG H L, LIN C L, LIU S, XU H D, CHEN Y Q. Hydrothermal deactivation over CuFe/BEA for NH3-SCR[J]. J Ind Eng Chem, 2018, 65:40-50. doi: 10.1016/j.jiec.2018.04.009
    [51]
    KOVARIK L, WASHTON N M, KUKKADAPU R, DEVARAJ A, WANG A Y, WANG Y L, SZANYI J, PEDEN C H F, GAO F. Transformation of active sites in Fe/SSZ-13 SCR catalysts during hydrothermal aging:A spectroscopic, microscopic, and kinetics study[J]. ACS Catal, 2017, 7(4):2458-2470. doi: 10.1021/acscatal.6b03679
    [52]
    BRANDENBERGER S, KROCHER O, CASAPU M, TISSLER A, RODERIK A. Hydrothermal deactivation of Fe-ZSM-5 catalysts for the selective catalytic reduction of NO with NH3[J]. Appl Catal B, 2011, 101:649-659. doi: 10.1016/j.apcatb.2010.11.006
    [53]
    GAO F, WANG Y L, KOLLAR M, WASHTON N M, SZANYI J, PEDEN C H F. A comparative kinetics study between Cu/SSZ-13 and Fe/SSZ-13 SCR catalysts[J]. Catal Today, 2015, 258:347-358. doi: 10.1016/j.cattod.2015.01.025
    [54]
    GAO F, WANG Y L, KOLLAR M, KUKKADAPU R, WASHTON N M, WANG Y L, SZANYI J, PEDEN C H F. Fe/SSZ-13 as an NH3-SCR catalyst:a reaction kinetics and FTIR/Mössbauer spectroscopic study[J]. Appl Catal B, 2015, 164:407-419. doi: 10.1016/j.apcatb.2014.09.031
    [55]
    GAO F, SZANYI J, WANG Y L, SSHENZER B, KOLLAR M, PEDEN C H F. Hydrothermal aging effects on Fe/SSZ-13 and Fe/Beta NH3-SCR catalysts[J]. Top Catal, 2016, 59(10/12):882-886. http://smartsearch.nstl.gov.cn/paper_detail.html?id=0e36f32e90b8f4cc37eb6ec75e2057a7
    [56]
    PIETERSE J A Z, PIRNGRUBER G D, VAN B J A, BOONEVELD S. Hydrothermal stability of Fe-ZSM-5 and Fe-BEA prepared by wet ion-exchange for N2O decomposition[J]. Stud Surf Sci Catal, 2007, 170:1386-1391. doi: 10.1016/S0167-2991(07)81005-6
    [57]
    FAN C, CHEN Z, PANG L, MING S J, ZHANG X F, ALBERT K B, LIU P, CHEN H P, LI T. The influence of Si/Al ratio on the catalytic property and hydrothermal stability of Cu-SSZ-13 catalysts for NH3-SCR[J]. Appl Catal A, 2018, 550:256-265. doi: 10.1016/j.apcata.2017.11.021
    [58]
    JIANG H, GUAN B, LIN H, ZHEN H. Cu/SSZ-13 zeolites prepared by in situ hydrothermal synthesis method as NH3-SCR catalysts Influence of the Si/Al ratio on the activity and hydrothermal properties[J]. Fuel, 2019, 255:115587-115602. doi: 10.1016/j.fuel.2019.05.170
    [59]
    VERMA A A, BATES S A, ANGGARA T, PAOLUCCI C, PAREKH A A, KAMASAMUDRAM K, YEZERESTS A, MILLER J T, DELGASSe W N, SCHNEIDER W F, RIBEIRO F H. NO oxidation:A probe reaction on Cu/SSZ-13[J]. J Catal, 2014, 312:179-190. doi: 10.1016/j.jcat.2014.01.017
    [60]
    SCHMIEG S J, OH S H, KIM C H, BROWN D B, LEE J H, PEDEN C H F, KIM D H. Thermal durability of Cu-CHA NH3-SCR catalysts for diesel NOx reduction[J]. Catal Today, 2012, 184(1):252-261. http://www.sciencedirect.com/science/article/pii/S0920586111007607
    [61]
    GAO F, MEI D H, WANG Y L, SZANYI J, PEDEN C H F. Selective catalytic reduction over Cu/SSZ-13 linking homo- and heterogeneous catalysis[J]. J Am Chem Soc, 2017, 139:4935-4942. doi: 10.1021/jacs.7b01128
    [62]
    LUO J Y, WANG D, KUMAR A, LI J H, KAMASAMUDRAM K, CURRIRE N, ALEKSEY Y. Identification of two types of Cu sites in Cu/SSZ-13 and their unique responses to hydrothermal aging and sulfur poisoning[J]. Catal Today, 2016, 267:3-9. doi: 10.1016/j.cattod.2015.12.002
    [63]
    KWAK J H, TRAN D, BURTOKN S D, SZANYI J, LEE J H, PEDEN C H F. Effects of hydrothermal aging on NH3-SCR reaction over Cu/zeolites[J]. J Catal, 2012, 287:203-209. doi: 10.1016/j.jcat.2011.12.025
    [64]
    MA L, CHENG Y S, CAVATAIO G, MCCABE R W, FU L X, LI J H. Characterization of commercial Cu-SSZ-13 and Cu-SAPO-34 catalysts with hydrothermal treatment for NH3-SCR of NOx in diesel exhaust[J]. Chem Eng J, 2013, 225:323-330. doi: 10.1016/j.cej.2013.03.078
    [65]
    BLAKEMAN P G, BURKHOLDER E M, CHEN H Y, COLLIER JI E, FEDEYKO J M, JOBSON H, RAJARAM R R. The role of pore size on the thermal stability of zeolite supported Cu SCR catalysts[J]. Catal Today, 2014, 231:56-63. doi: 10.1016/j.cattod.2013.10.047
    [66]
    KWAK J H, TONKYN R G, KIM D H, SZANYI J, PEDEN C H F. Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3[J]. J Catal, 2010, 275(2):187-190. http://www.sciencedirect.com/science/article/pii/S0021951710002691
    [67]
    YE Q, WANG L F, YANG R T. Activity, propene poisoning resistance and hydrothermal stability of copper exchanged chabazite-like zeolite catalysts for SCR of NO with ammonia in comparison to Cu/ZSM-5[J]. Appl Catal A, 2012, 427-428:24-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=81a1674535bc084f9b81049fe29115a3
    [68]
    SHUAN H, YE Q, CHENG S Y, KANG T F, DAI H X. Effect of the hydrothermal aging temperature and Cu/Al ratio on the hydrothermal stability of CuSSZ-13 catalysts for NH3-SCR[J]. Catal Sci Technol, 2016, 10:1-3. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=72c331bc0e9ab208b9909a0399f2e6e2
    [69]
    LUO J Y, GAO F, KAMASAMUDRAM K, CURRIER N, PEDEN C H F, YEZERETS A. New insights into Cu/SSZ-13 SCR catalyst acidity. Part I:nature of acidic sites probed by NH3 titration[J]. J Catal, 2017, 348:291-299. doi: 10.1016/j.jcat.2017.02.025
    [70]
    WANG A, CHEN Y, WALTER E. D, WASHTON N M, MEI D, VARGA T, WANG Y, SZANYI J, WANG Y, PEDEN C H F, GAO F. Unraveling the mysterious failure of Cu/SAPO-34 selective catalytic reduction catalysts[J]. Nat Commun, 2019, 10(1):1137-1149. http://www.nature.com/articles/s41467-019-09021-3
    [71]
    WANG A Y, ARORA P, BERNIN D, KUMAR A, KAMASAMUDRAM K, OLSSON L. Investigation of the robust hydrothermal stability of Cu/LTA for NH3-SCR reaction[J]. Appl Catal B, 2019, 246:242-253. doi: 10.1016/j.apcatb.2019.01.039
    [72]
    JO D H, PARK G T, RYU T, HONG S B. Economical synthesis of high-silica LTA zeolites:A step forward in developing a new commercial NH3-SCR catalyst[J]. Appl Catal B, 2019, 243:212-219. doi: 10.1016/j.apcatb.2018.10.042
    [73]
    SHAN Y L, SHAN W P, SHI X Y, DU J P, YU Y B, HE H. A comparative study of the activity and hydrothermal stability of Al-rich Cu-SSZ-39 and Cu-SSZ-13[J]. Appl Catal B, 2020, 264:118511-118523. doi: 10.1016/j.apcatb.2019.118511
    [74]
    WANG Y, LI G G, ZHANG S Q, ZHANG X Y, ZHANG X, HAO Z P. Promoting effect of Ce and Mn addition on Cu-SSZ-39 zeolites for NH3-SCR reaction:Activity, hydrothermal stability, and mechanism study[J]. Chem Eng J, 2020, 393:124782-124795. doi: 10.1016/j.cej.2020.124782
    [75]
    ZHANG N N, XIN Y, LI Q, MA X C, QI Y X, ZHENG L R, ZHANG Z L. Ion exchange of one-pot synthesized Cu-SAPO-44 with NH4NO3 to promote Cu dispersion and activity for selective catalytic reduction of NOx with NH3[J]. Catalysts, 2019, 9(11):882-894. doi: 10.3390/catal9110882
    [76]
    XIN Y, ZHANG N N, WANG X, LI Q, MA X C, QI Y X, ZHENG L R, ANDEISON J A, ZHANG Z L. Efficient synthesis of the Cu-SAPO-44 zeolite with excellent activity for selective catalytic reduction of NO by NH3[J]. Catal. Today, 2019, 332:35-41. doi: 10.1016/j.cattod.2018.08.018
    [77]
    AHN N H, RYU T, KANG Y, KIM H, SHIN J, NAM I S, HONG S B. The origin of an unexpected increase in NH3-SCR activity of aged Cu-LTA catalysts[J]. ACS Catal, 2017, 7(10):6781-6785. doi: 10.1021/acscatal.7b02852
    [78]
    CAMBIOR M A, CORMA A, VALENCIA S. Characterization of nanocrystalline zeolite Beta[J]. Microporous Mesoporous Mater, 1998, 25:59-74. doi: 10.1016/S1387-1811(98)00172-3
    [79]
    HUANG S Y, WANG J, WANG J Q, WANG C, SHEN M Q, LI W. The influence of crystallite size on the structural stability of Cu/SAPO-34 catalysts[J]. Appl Catal B, 2019, 248:430-440. doi: 10.1016/j.apcatb.2019.02.054
    [80]
    DU J P, SHI X Y, SHAN Y L, WANG Y J, ZHANG W S, YU Y B, SHAN W P, HE H. The effect of crystallite size on low-temperature hydrothermal stability of Cu-SAPO-34[J]. Catal Sci Technol, 2020, 10:2855-2863. doi: 10.1039/D0CY00414F
    [81]
    PENG C, LIU Z D, AOKI H, CHOKKALINGAM A, HIROKI Y, KOJI O, SOHEI S, MARIKO A, HIROYUKI S, TAKAHIKO T, MUKTI R R, TATSUYA O, WAKIHARA T. Preparation of nanosized SSZ-13 zeolite with enhanced hydrothermal stability by a two-stage synthetic method[J]. Microporous Mesoporous Mater, 2018, 255:192-199. doi: 10.1016/j.micromeso.2017.07.042
    [82]
    FENG B J, ZHONG W, SUN Y Y, ZHANG C H, TANG S F, LI X B, XIANG H. Size controlled ZSM-5 on the structure and performance of Fe catalyst in the selective catalytic reduction of NOx with NH3[J]. Catal Commun, 2016, 80:20-23. doi: 10.1016/j.catcom.2016.02.020
    [83]
    FICKEL D W, DADDIO E, LAUTERBACH J A, LOBO R F. The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites[J]. Appl Catal B, 2011, 102(3/4):441-448. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0fb9994b0a77714b0529c2edbe512293
    [84]
    KIM Y J, LEE J K, MIN K M, HONG S B, NAM I S, ChO B K. Hydrothermal stability of Cu/SSZ-13 for reducing NOx by NH3[J]. J Catal, 2014, 311:447-457. doi: 10.1016/j.jcat.2013.12.012
    [85]
    CHENG J, HAN S, YE Q, CHENG S Y, KANG T F, DAI H X. Effects of hydrothermal aging at high and low temperatures on the selective catalytic reduction of NOx with NH3 over Cu/SAPO-34[J]. Res Chem Intermed, 2019, 45(4):2023-2044. doi: 10.1007/s11164-018-03712-0
    [86]
    WANG J, FAN D Q, YU T, WANG J Q, HAO T, HU X Q, SHEN M Q, LI W. Improvement of low-temperature hydrothermal stability of Cu/SAPO-34 catalysts by Cu2+ species[J]. J Catal, 2015, 322:84-90. doi: 10.1016/j.jcat.2014.11.010
    [87]
    WANG Q Y, SHEN M Q, WANG J Q, WANG C, WANG J. Nature of cerium on improving low-temperature hydrothermal stability of SAPO-34[J]. J Rare Earths, 2020, In press. http://www.researchgate.net/publication/343122359_Nature_of_cerium_on_improving_low-temperature_hydrothermal_stability_of_SAPO-34
    [88]
    XIANG X, WU P F, CAO Y, CAO L, WANG Q Y, XU S T, TIAN P, LIU Z M. Investigation of low-temperature hydrothermal stability of Cu-SAPO-34 for selective catalytic reduction of NOx with NH3[J]. Chinese J Catal, 2017, 38(5):918-927. doi: 10.1016/S1872-2067(17)62836-5
    [89]
    MING S J, CHEN Z, FAN C, PANG L, GUO W, ALBERT K B, LIU P, LI T. The effect of copper loading and silicon content on catalytic activity and hydrothermal stability of Cu-SAPO-18 catalyst for NH3-SCR[J]. Appl Catal A, 2018, 559:47-56. doi: 10.1016/j.apcata.2018.04.008
    [90]
    SHAN Y L, DUA J P, YUA Y B, SHAN W P, SHAI X Y, HE H. Precise control of post-treatment significantly increases hydrothermal stability of in-situ synthesized Cu-zeolites for NH3-SCR reaction[J]. Appl Catal B, 2020, 266:118655-118667. doi: 10.1016/j.apcatb.2020.118655
    [91]
    ANDONOVA S, TAMM S, MONTREUIL C, LAMBERT C, OLSSON L. The effect of iron loading and hydrothermal aging on one-pot synthesized Fe/SAPO-34 for ammonia SCR[J]. Appl Catal B, 2016, 180:775-787. doi: 10.1016/j.apcatb.2015.07.007
    [92]
    JIANG H, GUAN B, PENG X S, ZHAN R, HE L, ZHEN H. Influence of synthesis method on catalytic properties and hydrothermal stability of Cu/SSZ-13 for NH3-SCR reaction[J]. Chem Eng J, 2020, 379:122358-122370. doi: 10.1016/j.cej.2019.122358
    [93]
    WU X X, PENG J X, YANG S M, XU W Y. Investigation on the stability of copper modification of SAPO-34 catalysts in NH3-SCR reaction after hydrothermal aging[J]. Can J Chem, 2020, 98(5):236-243. doi: 10.1139/cjc-2019-0462
    [94]
    WANG Y, XIE L, LIU F, RUAN W. Effect of preparation methods on the performance of CuFe-SSZ-13 catalysts for selective catalytic reduction of NOx with NH3[J]. J Environ Sci (China), 2019, 81:195-204. doi: 10.1016/j.jes.2019.01.013
    [95]
    CHEN J L, PENG G, ZHENG W, ZHANG W B, GUO L, WU X Q. Excellent performance of one-pot synthesized Fe-containing MCM-22 zeolites for the selective catalytic reduction of NOx with NH3[J].Catal Sci Technol, 2020, In press. http://pubs.rsc.org/en/content/articlelanding/2020/cy/d0cy00989j
    [96]
    ZHAO H W, ZHAO Y N, MA Y H, XIN Y, MIAO W, CHEN H, ZHANG C J, LI Y D. Enhanced hydrothermal stability of a Cu-SSZ-13 catalyst for the selective reduction of NOx by NH3 synthesized with SAPO-34 micro-crystallite as seed[J]. J Catal, 2019, 377:218-223. doi: 10.1016/j.jcat.2019.07.023
    [97]
    BERGGRUND M, INGELSTEN H H, SKOGLUNDH M, PALMQVIST A E C. Influence of synthesis conditions for ZSM-5 on the hydrothermal stability of Cu-ZSM-5[J]. Catal Letters, 2009, 130(1/2):79-85. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f720ba8a2dcb2b292a9064c65879efcc
    [98]
    WANG M X, PENG Z L, ZHANG C M, LIU M M, HAN L, HOUY Q, HUANG Z G, WANG J C, BAO W R, CHANG L P. Effect of copper precursors on the activity and hydrothermal stability of Cu-SSZ-13 NH3-SCR catalysts[J]. Catalysts, 2019, 9:781-795. doi: 10.3390/catal9090781
    [99]
    WOO J, BERNIN D, AHARI H, SHOST M, ZAMMIT M, OLSSON L. Understanding the mechanism of low temperature deactivation of Cu/SAPO-34 exposed to various amounts of water vapor in the NH3-SCR reaction[J].Catal Sci Technol, 2019, 9(14):3623-3636. doi: 10.1039/C9CY00240E
    [100]
    LIN C L, CAO Y, FENG X, LIN Q J, XU H D, CHEN Y Q. Effect of Si islands on low-temperature hydrothermal stability of Cu/SAPO-34 catalyst for NH3-SCR[J]. J Taiwan Inst E, 2017, 81:288-294. doi: 10.1016/j.jtice.2017.09.050
    [101]
    LI P, ZHANG W P, HAN X W, BAO X H. Conversion of methanol to hydrocarbons over phosphorus-modified ZSM-5/ZSM-11 intergrowth zeolites[J]. Catal Letters, 2009, 134(1/2):124-130. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=35cbb1af7dec65ce3b8be8a02a9d0974
    [102]
    ZENG P H, LIANG Y, JI S F, SHEN B J, LIU H H, WANG B J, ZHAO H J, LI M F. Preparation of phosphorus-modified PITQ-13 catalysts and their performance in 1-butene catalytic cracking[J]. J Energ Chem, 2014, 23(2):193-200. http://www.zhangqiaokeyan.com/academic-journal-cn_journal-energy-chemistry_thesis/0201258478421.html
    [103]
    CORMA A, MENGUAL J, MIGUEL P J. IM-5 zeolite for steam catalytic cracking of naphtha to produce propene and ethene. An alternative to ZSM-5 zeolite[J]. Appl Catal A, 2013, 460-461:106-115. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4ada62a2b1a38667820851a71186e8e2
    [104]
    ZHUANG J Q, MA D, YANG G, YAN Z M, LIU X M, LIU X C, HAN X W, BAO X H, PENG X, LIU Z M. Solid-state MAS NMR studies on the hydrothermal stability of the zeolite catalysts for residual oil selective catalytic cracking[J]. J Catal, 2004, 228:234-242. doi: 10.1016/j.jcat.2004.08.034
    [105]
    WANG X, DAI W L, WU G J, LI L D, GUAN N J, HUNGER M. Phosphorus modified HMCM-22:Characterization and catalytic application in methanol-to-hydrocarbons conversion[J]. Microporous Mesoporous Mater, 2012, 151:99-106. doi: 10.1016/j.micromeso.2011.11.008
    [106]
    BUCHHOLZ A, WANG W, XU M, ARNOLD A, HUNGER M. Thermal stability and dehydroxylation of Brønsted acid sites in silicoaluminophosphates H-SAPO-11, H-SAPO-18, H-SAPO-31, and H-SAPO-34 investigated by multi-nuclear solid-state NMR spectroscopy[J]. Microporous Mesoporous Mater, 2002, 56:267-278. doi: 10.1016/S1387-1811(02)00491-2
    [107]
    KALIUCHI Y, TANIGAWA T, TSUNOJI N, TAKAMITSU Y, Sadakane M, SANO T. Phosphorus modified small-pore zeolites and their catalytic performances in ethanol conversion and NH3-SCR reactions[J]. Appl Catal A, 2019, 575:204-213. doi: 10.1016/j.apcata.2019.02.026
    [108]
    MA Y H, ZHAO H W, ZHANG C J, ZHAO Y N, CHEN H, LI Y D. Enhanced hydrothermal stability of Cu-SSZ-13 by compositing with Cu-SAPO-34 in selective catalytic reduction of nitrogen oxides with ammonia[J]. Catal Today, 2019, In press. http://www.researchgate.net/publication/332101401_Enhanced_hydrothermal_stability_of_Cu-SSZ-13_by_compositing_with_Cu-SAPO-34_in_selective_catalytic_reduction_of_nitrogen_oxides_with_ammonia
    [109]
    FAN J, NING P, WANG Y C, SONG Z X, LIU X, WANG H M, WANG J, WANG L Y, ZHANG Q L. Significant promoting effect of Ce or La on the hydrothermal stability of Cu-SAPO-34 catalyst for NH3-SCR reaction[J]. Chem Eng J, 2019, 369:908-919. doi: 10.1016/j.cej.2019.03.049
    [110]
    GAO Q, YE Q, HAN S A, CHENG S Y, KANG T F, DAI H X. Effect of Ce doping on hydrothermal stability of Cu-SAPO-18 in the selective catalytic reduction of NO with NH3[J]. Catal Surv from Asia, 2020, 24(2):134-142. doi: 10.1007/s10563-020-09294-5
    [111]
    TOYOHIRO U, LIU Z D, SAYOKO I, ZHU J, CHOKKALINGAM A, HIROKAZU I, NAOKI O, YUKICHI S, SHIRAMATA Y, KUSAMOTO T, WAKIHARA T. Improve the hydrothermal stability of Cu-SSZ-13 zeolite catalyst by loading a small amount of Ce[J]. ACS Catal, 2018, 8(10):9165-9173. doi: 10.1021/acscatal.8b01949
    [112]
    XIANG X, CAO Y, SUN L J, WU P F, CAO L, XU S T, TIANn P, LIU Z M. Improving the low-temperature hydrothermal stability of Cu-SAPO-34 by the addition of Ag for ammonia selective catalytic reduction of NOx[J]. Appl Catal A, 2018, 551:79-87. doi: 10.1016/j.apcata.2017.12.001
    [113]
    RAMIREZ-GARZA R E, RODRIGUEZ-IZNAGA I, SIMAKOV A, FARIAS M H, CASTILLON-BARRAZA F F. Cu-Ag/mordenite catalysts for NO reduction:Effect of silver on catalytic activity and hydrothermal stability[J]. Mater Res BullMater Res Bull, 2018, 97:369-378. doi: 10.1016/j.materresbull.2017.09.001
    [114]
    SONG C M, ZHANG L H, LI Z G, LU Y R, LI K X. Co-exchange of Mn:A simple method to improve both the hydrothermal stability and activity of Cu/SSZ-13 NH3-SCR catalysts[J]. Catalysts, 2019, 9:455-468. doi: 10.3390/catal9050455
    [115]
    ZHAO Y Y, BYUNGCHUL C, KIM D. Effects of Ce and Nb additives on the de-NOx performance of SCR/CDPF system based on Cu-beta zeolite for diesel vehicles[J]. Chem Sci, 2017, 164:258-269. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d28ed78191b28f6931a53693268c8e4d
    [116]
    FENG X, LIN Q J, CAO Y, ZHANG H L, LI Y S, XU H D, LIN C L, CHEN Y Q. Neodymium promotion on the low-temperature hydrothermal stability of a Cu/SAPO-34 NH3-SCR monolith catalyst[J]. J Taiwan Inst E, 2017, 80:805-812. doi: 10.1016/j.jtice.2017.09.036
    [117]
    LIN Q J, LIU J Y, LIU S, XU S H, LIN C L, FENG X, WANG Y, XU H D, CHEN Y Q. Barium-promoted hydrothermal stability of monolithic Cu/BEA catalyst for NH3-SCR[J]. Dalton Trans, 2018, 47(42):15038-15048. doi: 10.1039/C8DT03156H
    [118]
    WANG C, WANG C, WANG J, WANG J Q, SHEN M Q, LI W. Effects of Na+ on Cu/SAPO-34 for ammonia selective catalytic reduction[J]. J Environ Sci (China), 2018, 70:20-28. doi: 10.1016/j.jes.2017.11.002
    [119]
    XIE L J, LIU F D, SHI X Y, XIAO F S, HE H. Effects of post-treatment method and Na co-cation on the hydrothermal stability of Cu/SSZ-13 catalyst for the selective catalytic reduction of NOx with NH3[J]. Appl Catal B, 2015, 179:206-212. doi: 10.1016/j.apcatb.2015.05.032
    [120]
    MA J, SI Z C, WENG D, WU X D, YUE M. Potassium poisoning on Cu-SAPO-34 catalyst for selective catalytic reduction of NOx with ammonia[J]. Chem Eng J, 2015, 267:191-200. doi: 10.1016/j.cej.2014.11.020
    [121]
    WANG C, YAN W J, WANG Z X, CHEN Z X, WANG J Q, WANG J, WANG J M, SHEN M Q, KANG X. The role of alkali metal ions on hydrothermal stability of Cu/SSZ-13 NH3-SCR catalysts[J]. Catal Today, 2019, In press. http://www.sciencedirect.com/science/article/pii/S0920586119303487
    [122]
    ZHAO Z C, YU R, ZHAO R R, SHI C, GIES H, XIAO F S, DE V D, YoOKOI T, BAO X H, KOLB U, FEYEN M, MCGUIRE R, MAURER S, MOINI A, MULER U, ZHANG W P. Cu-exchanged Al-rich SSZ-13 zeolite from organotemplate-free synthesis as NH3-SCR catalyst:Effects of Na+ ions on the activity and hydrothermal stability[J]. Appl Catal B, 2017, 217:421-428. doi: 10.1016/j.apcatb.2017.06.013
    [123]
    CUI Y R, WANG Y L, MEI D H, WALTER E, WASHTON N M, HOLLADAY J D, WANGY, SZANYA J, PEDEN C H F, GAO F. Revisiting effects of alkali metal and alkaline earth co-cation additives to Cu/SSZ-13 selective catalytic reduction catalysts[J]. J Catal, 2019, 378:363-375. doi: 10.1016/j.jcat.2019.08.028
    [124]
    ZHANG T, SHI J, LIU J, WANG D X, ZHAO Z, CHENG K, LI J M. Enhanced hydrothermal stability of Cu-ZSM-5 catalyst via surface modification in the selective catalytic reduction of NO with NH3[J]. Appl Surf Sci, 2016, 375:186-195. doi: 10.1016/j.apsusc.2016.03.049
    [125]
    MIYAKE K, INOUE R, MIURA T, NAKAI M, ALJABRIl H, HIROTA Y, USHIDA Y, TANAKA S, MIYAMOTO M, INGAAKI S, KUBOTA Y, KONG C Y, NISHIYAMA N. Improving hydrothermal stability of acid sites in MFI type aluminosilicate zeolite (ZSM-5) by coating MFI type all silica zeolite (silicalite-1) shell layer[J]. Microporous Mesoporous Mater, 2019, 288:109523-109536. doi: 10.1016/j.micromeso.2019.05.048
    [126]
    CHEN L, WANG X X, CONG Q L, MA H Y, LI S J, LI W. Design of a hierarchical Fe-ZSM-5@CeO2 catalyst and the enhanced performances for the selective catalytic reduction of NO with NH3[J]. Chem Eng J, 2019, 369:957-967. doi: 10.1016/j.cej.2019.03.055
    [127]
    ZHANG T, QIU F, LI J H. Design and synthesis of core-shell structured meso-Cu-SSZ-13@mesoporous aluminosilicate catalyst for SCR of NO with NH3:Enhancement of activity, hydrothermal stability and propene poisoning resistance[J]. Appl Catal B, 2016, 195:48-58. doi: 10.1016/j.apcatb.2016.04.058
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1340) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return