Volume 46 Issue 3
Mar.  2018
Turn off MathJax
Article Contents
LIN Na, LANG Lin, LIU Hua-cai, YIN Xiu-li, WU Chuang-zhi. Isothermal partial oxidative pyrolysis mechanisms of solid particles from biomass gasification[J]. Journal of Fuel Chemistry and Technology, 2018, 46(3): 290-297.
Citation: LIN Na, LANG Lin, LIU Hua-cai, YIN Xiu-li, WU Chuang-zhi. Isothermal partial oxidative pyrolysis mechanisms of solid particles from biomass gasification[J]. Journal of Fuel Chemistry and Technology, 2018, 46(3): 290-297.

Isothermal partial oxidative pyrolysis mechanisms of solid particles from biomass gasification

Funds:

the National Natural Science Foundation of China 51676192

the National Natural Science Foundation of China 51661145022

the Science and Technology Program of Guangzhou 201707010237

More Information
  • Corresponding author: LANG Lin, E-mail: langlin@ms.giec.ac.cn
  • Received Date: 2017-11-14
  • Rev Recd Date: 2018-01-18
  • Available Online: 2021-01-23
  • Publish Date: 2018-03-10
  • Isothermal pyrolytic characteristics of PBG at 400℃ under different reaction atmospheres in a horizontal tubular quartz reactor were investigated and compared. Meanwhile, chemical structures of PBG and its pyrolysis solid products were also analyzed with the help of XPS and 13C NMR methods. The results indicate that tar yields derived from PBG pyrolysis are 50.71 and 37.45 mg/g under biomass air gasification (BAG) and N2 atmospheres, respectively, while 11.96 mg/g under BAG+2%O2 atmosphere, which indicates that the presence of oxygen can inhibit the production of tar. Furthermore, the dominant reaction is characterized as the polycondensed aromatization involving dehydrogenation and deoxygenation in PBG under BAG atmosphere, tending to the formation of heavy organic compounds such as tar. While, surface oxygen-containing organic functional groups can be generated via the oxidation reaction between some surface functional groups of PBG and O2 in PBG under BAG+2%O2 atmosphere, inhibiting the aromatization of aromatic clusters and the formation of heavy organic compounds such as tar to some extent. Thus, the introduction of a limited amount of oxygen may be helpful for solving the pipe blockage during hot gas filtration of the raw BAG gas.
  • loading
  • [1]
    HEIDENREICH S. Hot gas filtration-A review[J]. Fuel, 2013, 104:83-94. doi: 10.1016/j.fuel.2012.07.059
    [2]
    WOOLCOCK P J, BROWN R C. A review of cleaning technologies for biomass-derived syngas[J]. Biomass Bioenerg, 2013, 52:54-84. doi: 10.1016/j.biombioe.2013.02.036
    [3]
    SHARMA S D, DOLAN M, ILYUSHECHKIN A Y, MCLENNAN K G, NGUYEN T, CHASE D. Recent developments in dry hot syngas cleaning processes[J]. Fuel, 2010, 89:817-826. doi: 10.1016/j.fuel.2009.05.026
    [4]
    ALVIN M A. Impact of char and ash fines on porous ceramic filter life[J]. Fuel Process Technol, 1998, 56:143-168. doi: 10.1016/S0378-3820(97)00088-X
    [5]
    SIMEONE E, SIEDLECKI M, NACKEN M, HEIDENREICH S, DE JONG W. High temperature gas filtration with ceramic candles and ashes characterisation during steam-oxygen blown gasification of biomass[J]. Fuel, 2013, 108:99-111. doi: 10.1016/j.fuel.2011.10.030
    [6]
    KAMIYA H, SEKIYA Y, HORIO M. Thermal stress fracture of rigid ceramic filter due to char combustion in collected dust layer on filter surface[J]. Powder Technol, 2011, 115(2):139-145. https://www.sciencedirect.com/science/article/pii/S0032591000003387
    [7]
    HEMMER G, HOFF D, KASPER G. Thermo-analysis of fly ash and other particulate materials for predicting stable filtration of hot gases[J]. Adv Powder Technol, 2003, 14(6):631-655. doi: 10.1163/15685520360731954
    [8]
    HURLEY J P, MUKHERJEE B. Assessment of filter dust characteristics that cause filter failure during hot-gas filtration[J]. Energ Fuel, 2006, 20(4):1629-1638. doi: 10.1021/ef050303k
    [9]
    龚智, 苏德仁, 曾中华, 魏志国, 潘贤齐.堇青石陶瓷过滤器生物质燃气除尘实验研究[J].陶瓷学报, 2011, 32(3):347-352. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tcxb201103002

    GONG Zhi, SU De-ren, ZENG Zhong-hua, WEI Zhi-guo, PAN Xian-qi. Experimental study on cordierite ceramic filter for biomass fuel gas filtration[J]. J Ceram, 2011, 32(3):347-352. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tcxb201103002
    [10]
    郎林, 谢建军, 杨文申, 阴秀丽, 吴创之.改性陶瓷管高温净化生物质粗燃气的研究[J].工程热物理学报, 2014, 35(8):1665-1668. http://www.cqvip.com/QK/90922X/201408/71678266504849524856485252.html

    LANG Lin, XIE Jian-jun, YANG Wen-shen, YIN Xiu-li, WU Chuang-zhi. Hot gas filtration performance of modified ceramic candles for biomass gasfication[J]. J Eng Thermophys, 2014, 35(8):1665-1668. http://www.cqvip.com/QK/90922X/201408/71678266504849524856485252.html
    [11]
    阴秀丽, 吴晋沪, 定明月, 郎林, 谢建军, 王树荣. 千吨生物质气化合成液体燃料关键技术与示范[R]. 455860816-3011BAD22B06/01, 2011.

    YIN Xiu-li, WU Jin-hu, DING Ming-yue, LANG Lin, XIE Jian-jun, WANG Shu-rong. The key technology and demonstration unit for 1000-ton synthol liquid fuel by biomass gasification[R]. 455860816-3011BAD22B06/01, 2011.
    [12]
    郎林, 阴秀丽, 吴创之, 潘贤齐. 一种生物质粗燃气高温除尘除焦一体化净化工艺[P]. 中国, 201310590071. 7, 2014-3-5.

    LANG Lin, YIN Xiu-li, WU Chuang-zhi, PAN Xian-qi. An integrated high-temperature dust/tar purification technologyfor the crude biomass fuel gas[P]. Chinese Patent, ZL201310590071. 7, Mar. 5th, 2014.
    [13]
    吴创之, 应浩, 李宗立, 阴秀丽, 潘贤齐, 周意. 生物质气化发电与热电联供系统研究[R]. 455860816-2012BAA09B03/01, 2012.

    WU Chuang-zhi, YING Hao, LI Zong-li, YIN Xiu-li, PAN Xian-qi, ZHOU Yi. The integrated systems for biomass gasification, power generation and CHP[R]. 455860816-2012BAA09B03/01, 2012.
    [14]
    江俊飞. 生物质燃气中固体颗粒物的临氧燃烧研究[D]. 北京: 中国科学院大学, 2016.

    JIANG Jun-fei. The partial oxidation of the particulate matters in product gas[D]. Beijing: Chinese Academy of Sciences, 2016.
    [15]
    陈亮. 有氧气氛下生物质热解特性的实验研究[D]. 上海: 上海交通大学, 2011. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D633171

    CHEN Liang. Experimental study on biomass pyrolysis characteristics in the presence of oxygen[D]. Shanghai: Shanghai Jiao Tong University, 2011. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D633171
    [16]
    NISHIMIYA K, HATA T, IMAMURA Y, ISHIHARA S. Analysis of chemical structure of wood charcoal by X-ray photoelectron spectroscopy[J]. J Wood Sci, 1998, 44(1):56-61. doi: 10.1007/BF00521875
    [17]
    张娜. 污泥热解过程中氮的迁移特性研究[D]. 沈阳: 沈阳航空航天大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10143-1013174096.htm

    Zhang Na. Study on the transformation characteristics of nitrogen during pyrolysis of sewage sludge[D]. Shenyang: Shenyang Aerospace University, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10143-1013174096.htm
    [18]
    SULIMAN W, HARSH A J B, ABU-LAIL N I, FORTUNA A, DALLMEYER I, GARCIA-PEREZ M. Modification of biochar surface by air oxidation:Role of pyrolysis temperature[J]. Biomass Bioenerg, 2016, 85:1-11. doi: 10.1016/j.biombioe.2015.11.030
    [19]
    CHENG C H, LEHMANN J, THIES J E, BURTON S D, ENGELHRAD M H. Oxidation of black carbon by biotic and abiotic processes[J].Org Geochem, 2006, 37(11):1477-1488. doi: 10.1016/j.orggeochem.2006.06.022
    [20]
    BOEHM H P. Surface oxides on carbon and their analysis:a critical assessment[J]. Carbon, 2002, 40(2):145-149. doi: 10.1016/S0008-6223(01)00165-8
    [21]
    王永刚, 周剑林, 陈艳巨, 胡秀秀, 张书, 林雄超. 13C固体核磁共振分析煤中含氧官能团的研究[J].燃料化学学报, 2013, 41(12):1422-1426. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18307.shtml

    WANG Yong-gang, ZHOU Jian-lin, CHEN Yan-ju, HU Xiu-xiu, ZHANG Shu, LIN Xiong-chao. Contents of O-containing functional groups in coals by 13C NMR analysis[J]. J Fuel Chem Technol, 2013, 41(12):1422-1426. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18307.shtml
    [22]
    宋昱, 朱炎铭, 李伍.东胜长焰煤热解含氧官能团结构演化的13C NMR和FT-IR分析[J].燃料化学学报, 2015, 43(5):519-529. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18619.shtml

    SONG Yu, ZHU Yan-ming, LI Wu.Structure evolution of oxygen functional groupsin Dongsheng long flame coal by 13C-NMR and FT-IR[J]. J Fuel Chem Technol, 2015, 43(5):519-529. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18619.shtml
    [23]
    BREWER C E, SCHMIDT-ROHR K, SATRIO J A, BROWN R C. Characterization of biochar from fast pyrolysis and gasification systems[J]. Environ Prog Sustain, 2009, 28(3):386-396. doi: 10.1002/ep.v28:3
    [24]
    SOLUM M S, PUGMIRE R J, GRANT D M. 13C solid-state NMR of Argonne premium coals[J]. Energ Fuel, 1989, 3(2):187-193. doi: 10.1021/ef00014a012
    [25]
    THOMAS S, LEDESMA E B, WORNAT M J. The effects of oxygen on the yields of the thermal decomposition products of catechol under pyrolysis and fule-rich oxidation conditions[J]. Fuel, 2007, 86(16):2581-2595. doi: 10.1016/j.fuel.2007.02.003
    [26]
    THOMAS S, WORNAT M J. The effects of oxygen on the yields of polycyclic aromatic hydrocarbons formed during the pyrolysis and fuel-rich oxidation of catechol[J]. Fuel, 2008, 87(6):768-781. doi: 10.1016/j.fuel.2007.07.016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (75) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return