Volume 47 Issue 12
Dec.  2019
Turn off MathJax
Article Contents
YAO Min, WANG Yan-di, LU Mei-zhen, JI Jian-bing, LIU Xue-jun. Hydrodeoxygenation of soybean oil methyl esters to alkane biodiesel over the PdMoP/γ-Al2O3 catalyst[J]. Journal of Fuel Chemistry and Technology, 2019, 47(12): 1450-1457.
Citation: YAO Min, WANG Yan-di, LU Mei-zhen, JI Jian-bing, LIU Xue-jun. Hydrodeoxygenation of soybean oil methyl esters to alkane biodiesel over the PdMoP/γ-Al2O3 catalyst[J]. Journal of Fuel Chemistry and Technology, 2019, 47(12): 1450-1457.

Hydrodeoxygenation of soybean oil methyl esters to alkane biodiesel over the PdMoP/γ-Al2O3 catalyst

More Information
  • Corresponding author: LIU Xue-jun, Tel: 0571-88320598, E-mail: liuxuejun@zjut.edu.cn
  • Received Date: 2019-07-25
  • Rev Recd Date: 2019-10-28
  • Available Online: 2021-01-23
  • Publish Date: 2019-12-10
  • The PdMoP/γ-Al2O3 catalyst was prepraed through loading the Pd, Mo, and P elements on the γ-Al2O3 support by incipient impregnation method and characterized by XRD, NH3-TPD, XPS, Py-FTIR, nitrogen physisorption and STEM-EDS. The catalytic performance of PdMoP/γ-Al2O3 in the hydrodeoxygenation of soybean oil methyl ester to alkane biodiesel was invetigqated and the operation conditions were optimized. The results show that a combination of Pd, Mo and P elements can effectively adjust the catalyst acidity; Mo can reduce strong acidity, whereads P can enhance weak acidity, leading to a decrease in the B/L ratio of weak acid sites and a slight increase in the B/L ratio of strong acid sites. The optimized hydrodeoxygenation conditions are 315 ℃, 1.5 MPa, WHSV=0.5 h-1, and V(hydrogen)/V(esters)=1100; under such conditions, the conversion of soybean oil methyl esters reaches 98.4% and the C15-18 alkane yield is 91.5%.
  • loading
  • [1]
    ZHAO X H, WEI L, CHENG S Y, JULSON J. Review of heterogeneous catalysts for catalytically upgrading vegetable oils into hydrocarbon biofuels[J]. Catalysts, 2017, 7(12):1-25 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=MDPI000000219930
    [2]
    KNOTHE G. Biodiesel and renewable diesel:A comparison[J]. Prog Energy Combust Sci, 2010, 36(3):364-373. doi: 10.1016/j.pecs.2009.11.004
    [3]
    ÁLVAREZ-GALVÁN M C, CAMPOS-MARTÍN J M, FIERRO J L. Transition metal phosphides for the catalytic hydrodeoxygenation of waste oils into green diesel[J]. Catalysts, 2019, 9, 293. doi: 10.3390/catal9030293
    [4]
    LI X, LUO X Y, JIN Y B, LI, JIN Y, ZHANG H D, ZHANG A P, XIE J. Heterogeneous sulfur-free hydrodeoxygenation catalysts for selectively upgrading the renewable bio-oils to second generation biofuels[J]. Renewable Sustainable Energy Rev, 2018, 82:3762-3797. doi: 10.1016/j.rser.2017.10.091
    [5]
    KOUL R, KUMAR N, SINGH R C. A review on the production and physicochemical properties of renewable diesel and its comparison with biodiesel[J]. Energy Sources, Part A, 2019, doi:10.1080/15567036. 2019. 1646355.
    [6]
    WANG H, YAN S L, SALLEY S O, SIMON N K Y. Support effects on hydrotreating of soybean oil over NiMo carbide catalyst[J]. Fuel, 2013, 111:81-87. doi: 10.1016/j.fuel.2013.04.066
    [7]
    HONGMANOROM P, LUENGNARUEMITCHAI A, CHOLLACOOP N, YOSHIMURA Y. Effect of the Pd/MCM-41 pore size on the catalytic activity and cis-trans selectivity for partial hydrogenation of canola biodiesel[J]. Energy Fuels, 2017, 31(8):8202-8209. doi: 10.1021/acs.energyfuels.7b00832
    [8]
    欧阳仟, 杨妮, 姚静雯, 黄进, 张怡, 刘学军.负载Pt催化生物柴油加氢脱氧性能研究[J].燃料化学学报, 2018, 46(10):61-68. http://www.ccspublishing.org.cn/article/id/1fbc0efb-ba2b-4b7c-afcf-0cf0d74612fa

    OU Yang-qian, YANG Ni, YAO Jing-wen, HUANG Jin, ZHANG Yi, LIU Xue-jun. Research on the catalytic performance of supported Pt catalyst for hydrodeoxygenation of biodiesel[J]. J Fuel Chem Technol, 2018, 46(10):61-68. http://www.ccspublishing.org.cn/article/id/1fbc0efb-ba2b-4b7c-afcf-0cf0d74612fa
    [9]
    DUAN H H, DONG J C, GU X R, PENG Y K, CHEN W X, ISSARIYAKUL T, MYERS W K, LI M J, YI N, KILPATRICK A F R, WANG Y, ZHENG X S, JI S F, WANG Q, FENG J T, CHEN D L, LI Y D, BUFFET J C, LIU H C, TSANG S C E, O'HARE D. Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd-Mo catalyst[J]. Nat Commun, 2017, 8(1):591. http://cn.bing.com/academic/profile?id=51856041df29b360f9ab9adc813d15cb&encoded=0&v=paper_preview&mkt=zh-cn
    [10]
    韩璐, 周亚松, 魏强, 罗怡, 王靖宇. NiW/Al2O3催化剂酸性与加氢活性的调变及对重油加氢脱氮性能的影响[J].燃料化学学报, 2014, 42(10):1233-1239. doi: 10.3969/j.issn.0253-2409.2014.10.012

    HAN Lu, ZHOU Ya-song, WEI Qiang, LUO Yi, WANG Jing-yu. Effect of acidity and hydrogenation ability on the hydrodenitrogenation performance of NiW/Al2O3 catalyst[J]. J Fuel Chem Technol, 2014, 42(10):1233-1239. doi: 10.3969/j.issn.0253-2409.2014.10.012
    [11]
    SCALDAFERRI C A, PASA V M D. Production of jet fuel and green diesel range biohydrocarbons by hydroprocessing of soybean oil over niobium phosphate catalyst[J]. Fuel, 2019, 245:458-466. doi: 10.1016/j.fuel.2019.01.179
    [12]
    OUYANG Q, YAO J W, YANG N, WANG Y W, YAO M, LIU X J. 0.7% Pt/beta-Al2O3 as a highly efficient catalyst for the hydrodeoxygenation of FAMEs to diesel-range alkanes[J]. Catal Commun, 2019, 120:46-50. doi: 10.1016/j.catcom.2018.11.013
    [13]
    SERRANO D P, ESCOLA J M, BRIONES L, ARROYO, M. Selective hydrodecarboxylation of fatty acids into long-chain hydrocarbons catalyzed by Pd/Al-SBA-15[J]. Microporous Mesoporous Mater, 2019, 280:88-96. doi: 10.1016/j.micromeso.2019.01.045
    [14]
    CHEN S, ZHOU G L, MIAO C X. Green and renewable bio-diesel produce from oil hydrodeoxygenation:Strategies for catalyst development and mechanism[J]. Renewable Sustainable Energy Rev, 2019, 101:568-589. doi: 10.1016/j.rser.2018.11.027
    [15]
    ETIENNE L, BERNARD D. Study of the hydrodeoxygenation of carbonyl, carboxylic and guaiacyl groups over sulfided CoMo/γ-Al2O3 and NiMo/γ-Al2O3 catalysts. Ⅰ. Catalytic reaction schemes[J]. Appl Catal A:Gen, 1994, 109(1):77-96. doi: 10.1016/0926-860X(94)85004-6
    [16]
    COAN P D, GRIFFIN M B, CIESIELSKI P N, MEDLIN J W. Phosphonic acid modifiers for enhancing selective hydrodeoxygenation over Pt catalysts:The role of the catalyst support[J]. J Catal, 2019, 372:311-320. doi: 10.1016/j.jcat.2019.03.011
    [17]
    FANG Q Y, JIANG Z C, GUO K, LIU X D, LI Z, LI G Y, HU G W. Low temperature catalytic conversion of oligomers derived from lignin in pubescens on Pd/NbOPO4[J]. Appl Catal B:Environ, 2019, doi:https://doi.org/ 10.1016/j.apcatb.2019.118325.
    [18]
    MONDAL J, SHIT S C, SINGURU R, POLLASTRI S, JOSEPH B, RAO B S, LINGAIAH N. Cu-Pd bimetallic nanoalloy anchored on N-rich porous organic polymer for high-performance hydrodeoxygenation of biomass-derived vanillin[J]. Catal Sci Technol, 2018, 8(8):2195-2210. doi: 10.1039/C8CY00325D
    [19]
    ADAMSKA K, OKAL J, TYLUS W. Stable bimetallic Ru-Mo/Al2O3 catalysts for the light alkane combustion:Effect of the Mo addition[J]. Appl Catal B:Environ, 2019, 246:180-194. doi: 10.1016/j.apcatb.2019.01.059
    [20]
    AMEEN M, Azizan M T, RAMLI A, YUSUP S, ALNARABIJI M S. Catalytic hydrodeoxygenation of rubber seed oil over sonochemically synthesized Ni-Mo/γ-Al2O3 catalyst for green diesel Production[J]. Ultrason Sonochem, 2018, 51:90-102.
    [21]
    YUAN G, BAI J, GAO B, REN L, MEI J, ZHANG L. The effect of crystal facet (312) exposure intensity of Ni12P5 nanoparticle on its hydrodechlorination catalytic activity[J]. Inorg Chem Commun, 2019, doi:https://doi.org/ 10.1016/j.inoche.2019.107595.
    [22]
    ZHANG Z, BI G, ZHANG H D, ZHANG A P, LI X, XIE J. Highly active and selective hydrodeoxygenation of oleic acid to second generation bio-diesel over SiO2-supported CoxNi1-xP catalysts[J]. Fuel, 2019, 247:26-35. doi: 10.1016/j.fuel.2019.03.021
    [23]
    XIN H, ZHOU W, ZHOU K, DU X, LI D, HU C. Controlling the growth of activated carbon supported nickel phosphide catalysts via adjustment of surface group distribution for hydrodeoxygenation of palmitic acid[J]. Catal Today, 2019, 319:182-190. doi: 10.1016/j.cattod.2018.03.051
    [24]
    MIJAN N A, LEE H V, ALSULTAN G A. Production of green diesel via cleaner catalytic deoxygenation of Jatropha curcas oil[J]. J Clean Prod, 2016, 167:1048-1059. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6edd1a2dff7bdb4bb479b99b12fe2e70
    [25]
    CHEN J X, SHI H, LI L, LI K L. Deoxygenation of methyl laurate as a model compound to hydrocarbons on transition metal phosphide catalysts[J]. Appl Catal B:Environ, 2014, 144:870-884. doi: 10.1016/j.apcatb.2013.08.026
    [26]
    SRIFA A, FAUNGNAWAKIJ K, ITTHIBENCHAPONG V, VIRIYA-EMPIKUL N, CHARINPANITKUL T, ASSABUMRUNGRAT S. Production of bio-hydrogenated diesel by catalytic hydrotreating of palm oil over NiMoS2/γ-Al2O3 catalyst[J]. Bioresour Technol, 2014, 158:81-90. doi: 10.1016/j.biortech.2014.01.100
    [27]
    PATTANAIK B P, MISRA R D. Effect of reaction pathway and operating parameters on the deoxygenation of vegetable oils to produce diesel range hydrocarbon fuels:A review[J]. Renewable Sustainable Energy Rev, 2017, 73:545-557. doi: 10.1016/j.rser.2017.01.018
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (149) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return