Volume 48 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
CHENG Jun-xia, ZHU Ya-ming, GAO Li-juan, ZHAO Xue-fei. Evolution of coke microcrystalline structure during calcination process of coal-based needle coke[J]. Journal of Fuel Chemistry and Technology, 2020, 48(9): 1071-1078.
Citation: CHENG Jun-xia, ZHU Ya-ming, GAO Li-juan, ZHAO Xue-fei. Evolution of coke microcrystalline structure during calcination process of coal-based needle coke[J]. Journal of Fuel Chemistry and Technology, 2020, 48(9): 1071-1078.

Evolution of coke microcrystalline structure during calcination process of coal-based needle coke

Funds:

The project was supported by the National Natural Science Foundation of China U1361126

Natural Science Foundation of Liaoning Province 20180551218

Liaoning Provincial Department of Education Project 2017LNQN04

Excellent Talent Training Project of University of Science and Technology Liaoning 2018RC07

Youth Fund of University of Science and Technology Liaoning 2016QN25

Youth Fund of University of Science and Technology Liaoning 2017QN06

Open Fund of University of Science and Technology Liaoning USTLKFSY201701

More Information
  • Corresponding author: ZHAO Xue-fei, E-mail:zhao_xuefei@sohu.com
  • Received Date: 2020-07-21
  • Rev Recd Date: 2020-08-25
  • Available Online: 2021-01-23
  • Publish Date: 2020-09-10
  • The evolution of the microstructure of needle coke during calcination process has been determined by FT-IR, XRD, and Raman spectroscopy, in which the needle cokes were obtained by calcination at heating rates of 2 and 5 ℃/ min with the coal-based green needle coke as the raw materials, respectively. The results show that the diameter of carbon microcrystal La, the height of carbon microcrystal Lc, the lamella content in the crystal (N), the average carbon number in each layer (n), and the content of tending regular graphite micro crystals (Ig) in the needle coke increase gradually with the rising of the calcination temperature. However, the value of Lc appears an "inflection point" due to the escape of volatiles and shrinkage of green needle coke. The layer spacing d002 fluctuates due to the random "layer fault" between the new layer and the original layer. The higher the heating rate, the smaller the characteristic carbon microcrystal parameters (La, Lc, N, and n) of needle coke, and the latter the temperature of "inflection point" for Lc appears. Also, the content of perfect graphite microcrystallite (IG/Iall) increases gradually with the increasing of temperature, and the defective graphite microcrystallites transforms to each other continuously during calcination process, finally being developed into the graphite microcrystals. The average bond length α of C-C bond in the carbon planes would become larger with the increase of calcination temperature.
  • loading
  • [1]
    TAMAS U, GUBICZA J, GABOR R, JENÖ G, CRISTIAN P. Microstructure of carbon blacks determined by X-ray diffraction profile analysis[J]. Carbon, 2002, 40(6):929-937. doi: 10.1016/S0008-6223(01)00224-X
    [2]
    MARTINS M A, OLIVEIRA L S, FRANCE A S. Modeling and simulation of petroleum coke calcination in rotary kilns[J]. Fuel, 2001, 80(11):1611-1622. doi: 10.1016/S0016-2361(01)00032-1
    [3]
    XIAO J, HUANG J, ZhONG Q, ZHANG H L, LI J. Modeling and simulation of petroleum coke calcination in pot calciner using two-fluid model[J]. J Metals, 2016, 68(2):643-655. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fcab9140c1f8dfcc41057f45ef7739ec
    [4]
    KAKUTA M, TSUCHIYA N, TANAKA H, NOGUCHI K. Structural changes during graphitization of petroleum coke[J]. Carbon, 1984, 22(2):237. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=J-STAGE_3769322
    [5]
    WALLOUCH R W, FAIR F V. Kinetics of the coke shrinkage process during calcinations[J]. Carbon, 1980, 13:147-153. doi: 10.1016/0008-6223(80)90023-8
    [6]
    RHEDEY P J, NADKARNI S K. Coker feedstock characteristics and calcined coke properties[J]. J Metals, 2013, 36(5):22-25. doi: 10.1007/BF03338449
    [7]
    HEINTA E A. Effect of calcination rate on petroleum coke properties[J]. Carbon, 1995, 33(6):817-820. doi: 10.1016/0008-6223(95)00002-U
    [8]
    角田三尚, 高力雅人, 蔡学敏.石油焦在煅烧阶段中的结构变化(研究报告之一)-关于焦炭的结构、组织、比重的热处理变化研究[J].炭素技术, 1983, (2):16-20. http://www.cnki.com.cn/Article/CJFDTotal-TSJS198302004.htm

    MITSUNAO K, YOSHIHARU O, CAI Xue-min. Structural changes during calcination of petroleum coke (Part 1)-Research on the heat treatment changes of coke's structure, organization and specific gravity[J]. Carbon Technol, 1983, (2):16-20. http://www.cnki.com.cn/Article/CJFDTotal-TSJS198302004.htm
    [9]
    SACHSSE H. Encyclopaedia of Chemical Technolog[M]. NewYork:Ohn Wiley and Sons, 1990.
    [10]
    RAGAN S, MATSH H. Effects of calcination upon properties of needle-cokes[J]. J Mater Sci, 1983, 12(18):3695-3705. doi: 10.1007/BF00540742
    [11]
    胡建宏, 煤焦油沥青精制机制及针状焦制备的基础研究[D].北京: 中国矿业大学, 2019.

    HU Jian-hong, Fundamental study on coal tar pitch refining and preparation of needle coke[D]. Beijing: China University of Minning & Tachnology, 2019.
    [12]
    ISMAGILOV Z R, SOZINOV S A, POPOVA A N, ZAPOTIN V P. Structural analysis of needle coke[J]. Coke Chem, 2019, 62(4):135-142. doi: 10.3103/S1068364X19040021
    [13]
    SAOWADEE N, AGERSTED K, BOWEN J R. Lattice constant measurement from electron backscatter diffraction patterns[J]. J Microsc, 2017, 266(2):200-210. doi: 10.1111/jmi.12529
    [14]
    ZENOU V Y, SNEJANA B. Microstructural analysis of undoped and moderately Sc-doped TiO2, anatase nanoparticles using Scherrer equation and Debye function analysis[J]. Mater Charact, 2018, 144:287-296. doi: 10.1016/j.matchar.2018.07.022
    [15]
    SARKAR A, DASGUPTA K, BARAT P, MUKHERJEE P, SATHIYAMOORTHY D. Studies on neon irradiated amorphous carbon using X-ray diffraction technique[J]. Int J Mod Phys B, 2008, 22(7):865-875. doi: 10.1142/S0217979208038119
    [16]
    BALACHANDRAN M. Study of stacking structure of amorphous carbon by X-ray diffraction technique[J]. Int J Electrochem Sci, 2012, 7(4):3127-3134. doi: 10.1016/j.jpowsour.2012.01.007
    [17]
    MANOJ B. Investigation of nanocrystalline structure in selected carbonaceous materials[J]. Int J Min Met Mater, 2014, 21(9):940-946. doi: 10.1007/s12613-014-0993-7
    [18]
    刘冬冬, 高继慧, 吴少华, 秦裕琨.热解过程煤焦微观结构变化的XRD和Raman表征[J].哈尔滨工业大学学报, 2016, 48(7):39-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hebgydxxb201607006

    LIU Dong-dong, GAO Ji-hui, WU Shao-hua, QIN Yu-kun. XRD and Raman characterization of microstructure changes of char during pyrolysis[J]. J Harbin Inst Technol, 2016, 48(7):39-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hebgydxxb201607006
    [19]
    HAN W H, CAI Y X, LI X H, WANG J, WANG J, LI K, WEI X. Raman spectroscopy analysis of carbon structural evolution of diesel particulate matters with the treatment of nonthermal plasma[J]. Spectrosc Spect Anal, 2012, 32(32):2152-2156. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201208028
    [20]
    DEWA K, ONO K, MATSUKAWA Y, TAKAHASHI K, SAITO Y, MATSUSHITA Y AOKI H, ERA K, AOKI T, YAMAGUCHI T. Determining the structure of carbon black using Raman spectroscopy and X-ray diffraction[J]. Carbon, 2017, 114(4):132-138. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=J-STAGE_3638943
    [21]
    夏训松.石油焦煅烧工艺研究[D].长沙: 中南大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10533-1012478702.htm

    XIA Song-xun. Research on petroleum coke calcining process[D]. Changsha: Central South University, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10533-1012478702.htm
    [22]
    曹嘉慧, 申峻, 王玉高, 刘刚, 李瑞丰, 徐青柏.石油沥青与煤焦油沥青混溶反应前后可析出多环芳烃含量的变化[J].石油化工, 2019, 48(7):702-708. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syhg201907008

    CAO Jia-hui, SHEN Jun, WANG Yu-gao, LIU Gang, LI Rui-feng, XU Qing-bai. Changes in leachable content of polycyclic aromatic hydrocarbons before and after mixing petroleum pitch with coal tar pitch[J]. Petrochem Technol, 2019, 48(7):702-708. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syhg201907008
    [23]
    LIN D, QIU P, XIE X, ZHAO Y. Chemical structure and pyrolysis characteristics of demineralized Zhundong coal[J]. Energy Source, 2017, 27:1-6. doi: 10.1080/15567036.2017.1403504
    [24]
    刘琬玥, 刘钦甫, 刘霖松, 刘迪.沁水盆地北部中高煤阶煤结构的FTIR特征研究[J].煤炭科学技术, 2019, 47(2):186-192. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtkxjs201902030

    LIU Wan-yue, LIU Qin-pu, LIU Lin-song, LIU Di. Study on FT-IR features of middle and high rank coal structure in north part of Qinshui Basin[J]. Coal Sci Technol, 2019, 47(2):186-192. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtkxjs201902030
    [25]
    SAIKIA B K, BORUAH R K, GOGOI P K. FT-IR and XRD analysis of coal from Makum coalfield of Assam[J]. J Earth Syst Sci, 2007, 116(6):575-579. doi: 10.1007/s12040-007-0052-0
    [26]
    POLITIS T G, NAZEM F F, 范有志.针状焦煅烧机理[J].炭素技术, 1992, (3):23-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000003139734

    POLITIS T G, NAZEM F F, FAN You-zhi. The calcination mechanism of needle coke[J]. Carbon Technol, 1992, (3):23-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000003139734
    [27]
    WHITTAKER M P, MILLER F C, FRITZ H C. Structural changes accompanying coke calcinations[J]. Ind Eng Chem Prod Res Dev, 1970, 9(2):187-190. doi: 10.1021/i360034a014
    [28]
    KIM J D, ROH J S, KIM M S. Effect of carbonization temperature on crystalline structure and properties of isotropic pitch-based carbon fiber[J]. Carbon Lett, 2017, 21:51-60. doi: 10.5714/CL.2017.21.051
    [29]
    SHI H, REMIMERS N, DAHN J R. Structure-refinement program for disordered carbons[J]. J Appl Crystallogr, 1993, 26:827-836. doi: 10.1107/S0021889893003784
    [30]
    SHI H. Disordered carbons and battery applications[D]. Burnaby: Simon Frasier University, 1993.
    [31]
    IWASHITA N, INAGAKI M. Relations between structural parameters obtained by X-Ray powder diffraction of various carbon materials[J]. Carbon, 1993, 31(7):1107-1113. doi: 10.1016/0008-6223(93)90063-G
    [32]
    NAKAMIZO M, KAMMERECK R, WALKER P L. Laser raman studies on carbons[J]. Carbon, 1974, 12(3):259-267. doi: 10.1016/0008-6223(74)90068-2
    [33]
    GUPTA A K, RUISSIN T J, GUTIE H R, EKLUND P C. Probing grapheneedgesr, viar, Raman scattering[J]. ACS Nano, 2009, 3(1):45-52.
    [34]
    陈师, 石彦平, 吴琪琳. PAN原丝在预氧化及碳化石墨化过程中微观结构的变化研究[J].化工新型材料, 2016, 44(5):121-123. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxxcl201605039

    CHEN Shi, SHI Yan-ping, WU Qi-lin. Microstructual evolution during preoxidation, carbonization and graphitization of PAN fiber[J]. New Chem Mater, 2016, 44(5):121-123. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxxcl201605039
    [35]
    GRAF D, MOLITOR F, ENSSLIN K. Spatially resolved Raman spectroscopy of single -and Few-Layer Graphene[J]. Nano Lett, 2007, 7(2):238-242. doi: 10.1021/nl061702a
    [36]
    FITZER E. Some remarks on Raman spectroscopy of carbon structures[J]. High Temp High Press, 1988, 20:449-454.
    [37]
    华中, 王月梅, 肖利, 秦政坤, 范继文. PAN基炭纤维中sp2杂化的C-C原子键距与结构参数之间关系[J].新型炭材料, 2005, 20(3):274-277 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xxtcl200503015

    HUA Zhong, WANG Yue-mei, XIAO Li, QIN Zheng-kun, FAN Wen-ji. Relations beltween hybrid C-C bond length and structure parameters of PAN-based carbon fibers[J]. New Chem Mater, 2005, 20(3):274-277. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xxtcl200503015
    [38]
    石彦平.拉曼光谱研究碳纤维的微观结构和性能[D].上海: 东华大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10255-1011071959.htm

    SHI Yan-ping. Raman spectroscopy to study the microstructure and properties of carbon fiber[D]. Shanghai: Donghua University, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10255-1011071959.htm
    [39]
    KO T H. Raman spectrum of modified PAN-based carbon fibers during graphitization[J]. J Appl Polym Sci, 1996, 59(4):577-580. doi: 10.1002/(SICI)1097-4628(19960124)59:4<577::AID-APP2>3.0.CO;2-Q
    [40]
    BU H, ZHAO M, WANG A, WANG X First-principles prediction of the transition from graphdiyne to a superlattice of carbon nanotubes and graphenenanoribbons[J]. Carbon, 2013, 65:341-348. doi: 10.1016/j.carbon.2013.08.035
    [41]
    沈曾民.新型炭材料[M].北京:化学工业出版社, 2003.

    SHEN Zeng-min. New Carbon Materials[M]. Beijing: Chemical Industry Press, 2003.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (422) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return