Volume 45 Issue 5
May  2017
Turn off MathJax
Article Contents
GU Ying-ying, ZHANG Zhen-zhou, WANG Wen-feng, GAO Xiu-juan, ZHANG Qing-de, HAN Yi-zhuo, TAN Yi-sheng. Effects of calcination atmosphere on the structure and performance of MoO3-SnO2 catalyst for the oxidation of dimethyl ether at low temperature[J]. Journal of Fuel Chemistry and Technology, 2017, 45(5): 572-580.
Citation: GU Ying-ying, ZHANG Zhen-zhou, WANG Wen-feng, GAO Xiu-juan, ZHANG Qing-de, HAN Yi-zhuo, TAN Yi-sheng. Effects of calcination atmosphere on the structure and performance of MoO3-SnO2 catalyst for the oxidation of dimethyl ether at low temperature[J]. Journal of Fuel Chemistry and Technology, 2017, 45(5): 572-580.

Effects of calcination atmosphere on the structure and performance of MoO3-SnO2 catalyst for the oxidation of dimethyl ether at low temperature

Funds:

the National Natural Science Foundation of China 21373253

the National Natural Science Foundation of China 20903114

Youth Innovation Promotion Association CAS 2014155

  • Received Date: 2017-01-24
  • Rev Recd Date: 2017-03-31
  • Available Online: 2021-01-23
  • Publish Date: 2017-05-10
  • MoO3-SnO2 catalysts with a Mo/Sn molar ratio of 1:3 was prepared by the co-precipitation method and calcined in different atmospheres (O2, air, N2 and H2); the effect of calcination atmosphere on the catalytic performance of MoO3-SnO2 in the oxidation of dimethyl ether (DME) to methyl formate (MF) was investigated. The results show that the MoO3-SnO2 catalyst prepared by calcination in O2 exhibits the highest activity; the conversion of DME reaches 25.10%, with the selectivity of 72.21% to MF. Over the catalyst calcined in H2, the conversion of DME is only 7.01%, with the selectivity of 75.82% to MF. The activity of the MoO3-SnO2 catalysts calcined at different atmospheres follows the order of O2 > air > N2 > H2. The results of XRD, Raman, XPS and ESR characterization indicate the presence of MoOx domains on the surface of the MoO3-SnO2 catalyst with a Mo/Sn molar ratio of 1:3. The terminal Mo=O groups of oligomeric MoO3 may be the active sites for the methoxy intermediate and the penta-coordinated Mo5+ species in the Mo-Sn interface may be able to promote the oxidation of DME to MF. Consequently, methoxy species are absorbed on the Mo5+ species in the Mo-Sn interfaces, which are oxidized to HCHO on the terminal Mo=O groups; after that, the absorbed HCHO may then react with the neighboring absorbed methoxy species, forming MF.
  • loading
  • [1]
    WANG D S, HAN Y Z, TAN Y S, TSUBAKI N. Effect of H2O on Cu-based catalyst in one-step slurry phase dimethyl ether synthesis[J]. Fuel Process Technol, 2009, 90(3): 446-451. doi: 10.1016/j.fuproc.2008.11.007
    [2]
    ZHANG Z Z, ZAHNG Q D, HAN Y Z, TSUBAKI N, TAN Y S. The effects of the Mo-Sn contact interface on the oxidation reaction of dimethyl ether to methyl formate at a low reaction temperature[J]. Catal Sci Technol, 2016, 6(15): 6109-6117. doi: 10.1039/C6CY00460A
    [3]
    ZHANG Z Z, ZAHNG Q D, HAN Y Z, TSUBAKI N, TAN Y S. Effect of MoO3 crystalline structure of MoO3-SnO2 catalysts on selective oxidation of glycol dimethyl ether to 1, 2-propandiol[J]. Catal Sci Technol, 2016, 6(6): 1842-1849. doi: 10.1039/C5CY00894H
    [4]
    曹平, 杨先贵, 唐聪明, 王公应. MoO3催化碳酸二甲酯与乙酸苯酯合成碳酸二苯酯[J].催化学报, 2009, 30(9): 853-855. http://www.oalib.com/paper/4477369

    CAO Ping, YANG Xian-gui, TANG Cong-ming, WANG Gong-yun. Molybdenum trioxide catalyst for transesterification of dimethyl carbonate and phenyl acetate to diphenyl carbonate[J]. Chin J Catal, 2009, 30(9): 853-855. http://www.oalib.com/paper/4477369
    [5]
    刘金龙, 朱银华, 汪怀远. MoO3/TiO2催化剂的二苯并噻吩加氢脱硫性能[J].过程工程学报, 2009, 9(5): 882-886. http://www.cqvip.com/qk/94710a/200905/31794189.html

    LIU Jin-long, ZHU Yin-hua, WANG Huai-yuan. Hydrodesulfurization of dibenzothiophen with MoO3/TiO2 catalyst[J]. Chin J Process Eng, 2009, 9(5): 882-886. http://www.cqvip.com/qk/94710a/200905/31794189.html
    [6]
    LIU H C, CHEUNG P, IGLESIA E. Structure and support effects on the selective oxidation of dimethyl ether to formaldehyde catalyzed by MoOx domains[J]. J Catal, 2003, 217(1): 222-232. http://www.sciencedirect.com/science/article/pii/S0021951703000253
    [7]
    LIU H C, IGLESIA E. Selective oxidation of dimethylether to formaldehyde on small molybdenum oxide domains[J]. J Catal, 2002, 208(1): 1-5. doi: 10.1006/jcat.2002.3574
    [8]
    黄秀敏, 徐奕德, 申文杰.负载型MoOx和VOx催化剂上二甲醚选择氧化制甲醛反应[J].催化学报, 2004, 25(4): 267-271. http://cdmd.cnki.com.cn/Article/CDMD-80038-2006122745.htm

    HUANG Xiu-min, XU Yi-de, SHEN Wen-jie. Selective oxidation of dimethylether to formaldehyde over supported MoOx and VOx catalysts[J]. Chin J Catal, 2004, 25(4): 267-271. http://cdmd.cnki.com.cn/Article/CDMD-80038-2006122745.htm
    [9]
    HUANG X M, LIU J L, CHEN J L, XU Y D, SHEN W J. Mechanistic study of selective oxidation of dimethyl ether to formaldehyde over Alumina-supported molybdenum oxide catalyst[J]. Catal Lett, 2006, 108(1/2): 79-86. http://www.springerlink.com/index/R16886210U312784.pdf
    [10]
    VALENTE N G. Structure and activity of Sn-Mo-O catalysts: Partial oxidation of methanol[J]. Appl Catal A: Gen, 2001, 205(1/2): 201-214. http://www.sciencedirect.com/science/article/pii/S0926860X00005652
    [11]
    刘广波, 张清德, 韩怡卓, 椿范立, 谭猗生. MoO3-SnO2催化剂上二甲醚低温氧化高选择性制备甲酸甲酯[J].燃料化学学报, 2013, 41(2): 223-227. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18126.shtml

    LIU Guang-bo, ZAHNG Qing-de, HAN Yi-zhuo, CHUN Fan-li, TAN Yi-sheng. Low-temperature oxidation of dimethyl ether to methyl formate with high selectivity over MoO3-SnO2 catalysts[J]. J Fuel Chem Technol, 2013, 41(2): 223-227. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18126.shtml
    [12]
    LIU G B, ZHANG Q D, HAN Y Z, TAN Y S. Direct oxidation of dimethyl ether to ethanol over WO3/HZSM-5 catalysts[J]. Catal Commun, 2012, 26(35): 173-177. https://www.researchgate.net/publication/257630298_Direct_oxidation_of_dimethyl_ether_to_ethanol_over_WO3HZSM-5_catalysts
    [13]
    LIU G B, ZHANG Q D, HAN Y Z, TSUBAKI N, TAN Y S. Effects of the MoO3 structure of Mo-Sn catalysts on dimethyl ether oxidation to methyl formate under mild conditions[J]. Green Chem, 2015, 17(2): 1057-1064. doi: 10.1039/C4GC01591F
    [14]
    LIU G B, ZHANG Q D, HAN Y Z, TSUBAKI N, TAN Y S. Selective oxidation of dimethyl ether to methyl formate over trifunctional MoO3-SnO2 catalyst under mild conditions[J]. Green Chem, 2013, 15(6): 1501-1504. doi: 10.1039/c3gc40279g
    [15]
    ZHANG Z Z, ZAHNG Q D, HAN Y Z, TSUBAKI N, TAN Y S. Effect of tetrahedral molybdenum oxide species and MoOx domains on the selective oxidation of dimethyl ether under mild condition[J]. Catal Sci Technol, 2016, 6(9): 2975-2983. doi: 10.1039/C5CY01569C
    [16]
    COSIMO J I, MARCHI A J, APESTEGUIA C R. Preparation of ternary Cu/Co/Al catalysts by the amorphous citrate process[J]. J Catal, 1992, 134(2): 594-607. doi: 10.1016/0021-9517(92)90345-I
    [17]
    王琪, 郝影娟, 陈爱平, 杨意泉.热处理对高硫化氢合成气一步法制甲硫醇K2MoO4-NiO/SiO2催化剂结构及性能的影响[J].催化学报, 2010, 31(2): 242-247.

    WANG Qi, HAO Ying-juan, CHEN Ai-ping, YANG Yi-quan. Effect of thermal treatment on structure and catalytic performance of K2MoO4-NiO/SiO2 catalyst for one-step synthesis of methanethiol from high H2S-containing syngas[J]. Chin J Catal, 2010, 31(2): 242-247.
    [18]
    NIWA M, YAMADA H, MURAKAMI Y. Activity for the oxidation of methanol of a molybdena monolayer supported on tin oxide[J]. J Catal, 1992, 134(1): 331-339. doi: 10.1016/0021-9517(92)90232-7
    [19]
    STAMPF S, CHEN Y, DUMESIC J A, HILL C G. Interactions of molybdenum oxide with various oxide supports: Calcination of mechanical mixtures[J]. J Catal, 1987, 105(2): 445-454. doi: 10.1016/0021-9517(87)90072-8
    [20]
    MENG Y L, WANG T, CHEN S, GONG J L. Selective oxidation of methanol to dimethoxymethane on V2O5-MoO3/γ-Al2O3 catalysts[J]. Appl Catal B: Environ, 2014, 160-161(1): 161-172. http://www.sciencedirect.com/science/article/pii/S0926337314002847
    [21]
    VALENTE N G, ARR'UA L A, CAD'US L E. Structure and activity of Sn-Mo-O catalysts: Partial oxidation of methanol[J]. Appl Catal A: Gen, 2001, 205(1/2): 201-214. http://www.sciencedirect.com/science/article/pii/S0926860X00005652
    [22]
    RUSLAN N N, TRIWAHYONO S, JALIL A A, TIMMIATI S N, ANNUAR N H R. Study of the interaction between hydrogen and the MoO3-ZrO2 catalyst[J]. Appl Catal A: Gen, 2012, 413(414): 176-182. http://www.sciencedirect.com/science/article/pii/S0926860X1100665X
    [23]
    SOJKA Z, CHE M. Catalytic chemistry of transition metal ions on oxide surfaces. A molecular approach using EPR techniques[J]. C R Acad Sci, Ser Ⅱc: Chim, 2000, 3(3): 163-174. http://www.sciencedirect.com/science/article/pii/S1387160900001389
    [24]
    LOCHAR V. Study of methanol, formaldehyde and methyl formate adsorption on the surface of Mo/Sn oxide catalyst[J]. Appl Catal A: Gen, 2006, 309(1): 33-36. doi: 10.1016/j.apcata.2006.04.030
    [25]
    WHITING G T, KONDRAT S A, HAMMOND C, DIMITRATOS N, HUTCHINGS G J. Methyl formate formation from methanol oxidation using supported Gold-Palladium nanoparticles[J]. ACS Catal, 2015, 5(2): 637-644. doi: 10.1021/cs501728r
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (95) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return