Volume 46 Issue 10
Oct.  2018
Turn off MathJax
Article Contents
FENG Zhi-hao, XU Jun-li, HAO Pan, HOU Ran-ran, GUO Zhen-xing, BAI Jin, BAI Zong-qing, LI Wen. Physicochemical properties and pyrolysis characteristics of mild liquefaction solid product of Hami coal[J]. Journal of Fuel Chemistry and Technology, 2018, 46(10): 1153-1160.
Citation: FENG Zhi-hao, XU Jun-li, HAO Pan, HOU Ran-ran, GUO Zhen-xing, BAI Jin, BAI Zong-qing, LI Wen. Physicochemical properties and pyrolysis characteristics of mild liquefaction solid product of Hami coal[J]. Journal of Fuel Chemistry and Technology, 2018, 46(10): 1153-1160.

Physicochemical properties and pyrolysis characteristics of mild liquefaction solid product of Hami coal

Funds:

joint foundation of Natural Science Foundation of China and Xinjiang Province U1703252

National Key Research and Development project of China 2017 YFB0602401

More Information
  • Corresponding author: BAI Zong-qing, Tel:0351-4040289, E-mail:baizq@sxicc.ac.cn
  • Received Date: 2018-07-18
  • Rev Recd Date: 2018-08-23
  • Available Online: 2021-01-23
  • Publish Date: 2018-10-10
  • In order to make rational use of mild liquefaction solid product of Hami coal (MLS), the physicochemical properties of MLS were investigated, and the characteristics and interactive effects of MLS and its extraction fractions during pyrolysis were studied by thermogravimetric analyzer (TGA) in this work. The results show that MLS contains higher content of hexane soluble fraction (HS, 36%) than Shenhua direct liquefaction residue, but has the lower asphaltene (A, 13%) and preasphaltene (PA, 9%). The results of GC-MS show that HS consists of higher content of alkane (41.8%) and the results of infrared spectra indicate that the contents of alkane side chains and substituted functional groups decrease in the order of HS, A, and PA. Whereas, alkane side chains and substituted functional groups do not exist in THFIS, indicating its high aromaticity. The minerals in MLS are mainly CaCO3 produced by liquefaction process, and inert components of SiO2, NaCl, Al2O3·2SiO2·2H2O in raw coal and Fe1-xS, which is the product of catalyst. The results of TGA show that, compared with Shenhua direct liquefaction residue, the temperatures of initial decomposition and the maximum rate of mass loss of MLS are lower, however, the final mass loss (54%) up to 950 ℃ is higher, which suggest that the pyrolysis activity of MLS is higher. In addition, there are two kinds of interactive effects among the extraction fractions of MLS during pyrolysis, which are related to the amount of HS. When the content of HS is high, it can supply small free radicals and play a driving role for the evolution of volatile during the pyrolysis process. However, when the content of HS is low, large free radicals in MLS extraction fractions will combine with each other, which inhibits the release of volatile.
  • loading
  • [1]
    史士东.煤加氢液化工程学基础[M].北京:化学工业出版社, 2012.

    SHI Shi-dong. Fundamentals of Coal Hydrogenation and Liquefaction Engineering[M]. Beijing:Chemical Industry Press, 2012.
    [2]
    黄传峰, 韩磊, 王孟艳, 李慧慧, 杨帆, 王永娟, 李大鹏, 王明峰, 霍鹏举, 王坚强.煤加氢液化残渣的性质及应用研究进展[J].现代化工, 2016, 36(6):19-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20162016070600069846

    HUANG Chuan-feng, HAN Lei, WANG Meng-yan, LI Hui-hui, YANG Fan, WANG Yong-juan, LI Da-peng, WANG Ming-feng, HUO Peng-jun, WANG Jian-qiang. Research development of properties and application of coal hydrogenation liquefaction residue[J]. Mod Chem Ind, 2016, 36(6):19-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20162016070600069846
    [3]
    国家能源局.国家能源局关于印发《煤炭深加工产业示范"十三五"规划》的通知[Z].中国: 国家能源局, 2017.
    [4]
    许邦, 初茉, 张慧慧, 王芳, 刘立新.煤直接液化残渣热解研究现状[J].洁净煤技术, 2013, 19(4):81-84. http://d.old.wanfangdata.com.cn/Periodical/jjmjs201304020

    XU Bang, CHU Mo, ZHANG Hui-hui, WANG Fang, LIU Li-xin. Research status of direct coal liquefaction residues pyrolysis[J]. Clean Coal Technol, 2013, 19(4):81-84. http://d.old.wanfangdata.com.cn/Periodical/jjmjs201304020
    [5]
    LUO W J, LAN X Z, SONG Y H, FU J P. Research progress on utilization of coal liquefaction residue[J]. Mater Rev, 2013, 27(6A):153-157. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cldb201311029
    [6]
    楚希杰, 李文, 白宗庆, 李保庆.神华煤直接液化残渣热解特性研究[J].燃料化学学报, 2009, 37(4):393-397. doi: 10.3969/j.issn.0253-2409.2009.04.002

    CHU Xi-jie, LI Wen, BAI Zong-qing, LI Bao-qing. Pyrolysis characteristics of Shenhau direct liquefaction residue[J]. J Fuel Chem Technol, 2009, 37(4):393-397. doi: 10.3969/j.issn.0253-2409.2009.04.002
    [7]
    LIU X, ZHOU Z J, HU Q J, DAI Z H, WANG F C. Experimental study on co-gasification of coal liquefaction residue and petroleum coke[J]. Energy Fuels, 2011, 25(8):3377-3381. doi: 10.1021/ef200402z
    [8]
    楚希杰, 李文, 李保庆, 陈皓侃, 白宗庆.煤直接液化残渣焦CO2气化反应的研究[J].燃料化学学报, 2006, 34(2):146-150. doi: 10.3969/j.issn.0253-2409.2006.02.004

    CHU Xi-jie, LI Wen, LI Bao-qing, CHEN Hao-kan, BAI Zong-qing. Gasification characteristics of coal liquefaction residues with carbon dioxide[J]. J Fuel Chem Technol, 2006, 34(2):146-150. doi: 10.3969/j.issn.0253-2409.2006.02.004
    [9]
    崔洪, 杨建丽, 刘振宇, 毕继诚.煤液化残渣中残留催化剂对其挥发分测定的影响[J].燃料化学学报, 2001, 29(3):228-231. doi: 10.3969/j.issn.0253-2409.2001.03.007

    CUI Hong, YANG Jian-li, LIU Zhen-yu, BI Ji-cheng. Effects of remaining catalyst on volatile matter measurement of coal hydrogenation residue[J]. J Fuel Chem Technol, 2001, 29(3):228-231. doi: 10.3969/j.issn.0253-2409.2001.03.007
    [10]
    谷小会, 史士东, 周铭.神华煤直接液化残渣中沥青烯组分的分子结构研究[J].煤炭学报, 2006, 31(6):785-789. doi: 10.3321/j.issn:0253-9993.2006.06.019

    GU Xiao-hui, SHI Shi-dong, ZHOU Ming. Study on the molecular structure of asphaltene fraction from the Shenhau coal direct liquefaction residue[J]. J China Coal Soc, 2006, 31(6):785-789. doi: 10.3321/j.issn:0253-9993.2006.06.019
    [11]
    谷小会, 周铭, 史士东.神华煤直接液化残渣中重质油组分的分子结构[J].煤炭学报, 2006, 31(1):76-80. doi: 10.3321/j.issn:0253-9993.2006.01.017

    GU Xiao-hui, ZHOU Ming, SHI Shi-dong. The molecular structure of heavy oil fraction from the Shenhua coal direct liquefaction residue[J]. J China Coal Soc, 2006, 31(1):76-80. doi: 10.3321/j.issn:0253-9993.2006.01.017
    [12]
    黄雍, 黄胜, 吴诗勇, 吴幼青, 高晋生.煤液化残渣的理化性质及低温热解行为研究[J].煤炭转化, 2015, 38(4):43-47. doi: 10.3969/j.issn.1004-4248.2015.04.009

    HUANG Yong, HUANG Sheng, WU Shi-yong, WU You-qing, GAO Jin-sheng. Physic-chemical properties and low temperature pyrolysis behaviors of coal direct liquefaction residue[J]. Coal Convers, 2015, 38(4):43-47. doi: 10.3969/j.issn.1004-4248.2015.04.009
    [13]
    李军, 杨建丽, 周淑芬, 李允梅.煤直接液化残渣溶剂萃取组分的热解行为研究[J].燃料化学学报, 2010, 38(6):647-651. doi: 10.3969/j.issn.0253-2409.2010.06.002

    LI Jun, YANG Jian-li, ZHOU Shu-fen, LI Yun-mei. Pyrolysis property of solvent extracts from a direct coal liquefaction residue[J]. J Fuel Chem Technol, 2010, 38(6):647-651. doi: 10.3969/j.issn.0253-2409.2010.06.002
    [14]
    XU L, TANG M C, DUAN L, LIU B L, MA X X, ZHANG Y L, ARGYLE M D, FAN M H. Pyrolysis characteristics and kinetics of residue from China Shenhua industrial direct coal liquefaction plant[J]. Thermochim Acta, 2014, 589:1-10. doi: 10.1016/j.tca.2014.05.005
    [15]
    WANG Z C, XUE W T, ZHU J, CHEN E S, PAN C X, KANG S G, LEI Z P, REN S B, SHUI H F. Study on the stability of hydro-liquefaction residue of Shenfu sub-bituminous coal[J]. Fuel, 2016, 181:711-717. doi: 10.1016/j.fuel.2016.05.042
    [16]
    SONG Y H, MA Q N, HE W J, TIAN Y H, LAN X Z. A comparative study on the pyrolysis characteristics of direct-coal-liquefaction residue through microwave and conventional methods[J]. Spectrosc Spec Anal, 2018, 38(4):1313-1318. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201804054
    [17]
    AWALLUDIN M F, SULAIMAN O, HASHIM R, NADHARI W N A W. An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction[J]. Renewable Sustainable Energy Rev, 2015, 50:1469-1484. doi: 10.1016/j.rser.2015.05.085
    [18]
    CUI H, YANG J L, LIU Z Y, BI J C. Characteristics of residues from thermal and catalytic coal hydroliquefaction[J]. Fuel, 2003, 82(12):1549-1556. doi: 10.1016/S0016-2361(03)00072-3
    [19]
    白进, 李文, 白宗庆, 李保庆.兖州煤中矿物质在高温下的变化[J].中国矿业大学学报, 2008, 27(3):369-372. doi: 10.3321/j.issn:1000-1964.2008.03.018

    BAI Jin, LI Wen, BAI Zong-qing, LI Bao-qing. Transformation of mineral matters in Yanzhou coal ash at high temperature[J]. J China Univ Min Technol, 2008, 27(3):369-372. doi: 10.3321/j.issn:1000-1964.2008.03.018
    [20]
    MONTANO P A, VAISHNAVA P P, KING J A, EISENTROUT E N. Mossbauer study of decomposition of pyrite in hydrogen[J]. Fuel, 1981, 60(8):712-716. doi: 10.1016/0016-2361(81)90224-6
    [21]
    LI X, BAI Z Q, BAI J, HAN Y N, KONG L X, LI W. Transformations and roles of sodium species with different occurrence modes in direct liquefaction of zhundong coal from xinjiang, northwestern china[J]. Energy Fuels, 2015, 29(9):5633-5639. doi: 10.1021/acs.energyfuels.5b01138
    [22]
    刘朋飞, 张永奇, 房倚天.煤直接液化残渣及其萃取产物的热重分析[J].燃料化学学报, 2012, 40(6):655-659. doi: 10.3969/j.issn.0253-2409.2012.06.003

    LIU Peng-fei, ZHANG Yong-qi, FANG Yi-tian. TG analysis of coal direct liquefaction residue and its solvent extracts[J]. J Fuel Chem Technol, 2012, 40(6):655-659. doi: 10.3969/j.issn.0253-2409.2012.06.003
    [23]
    XU J L, BAI Z Q, LI Z, GUO Z X, HAO P, BAI J, LI W. Interactions during co-pyrolysis of direct coal liquefaction residue with lignite and the kinetic analysis[J]. Fuel, 2018, 215:438-445. doi: 10.1016/j.fuel.2017.11.080
    [24]
    李军, 杨建丽, 刘振宇.煤直接液化残渣的热解特性研究[J].燃料化学学报, 2010, 38(4):385-390. doi: 10.3969/j.issn.0253-2409.2010.04.001

    LI Jun, YANG Jian-li, LIU Zhen-yu. Pyrolysis behavior of direct coal liquefaction residues[J]. J Fuel Chem Technol, 2010, 38(4):385-390. doi: 10.3969/j.issn.0253-2409.2010.04.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (118) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return