Volume 47 Issue 3
Mar.  2019
Turn off MathJax
Article Contents
LI Wen-yue, WU Shi-yong, WU You-qing, HUANG Sheng, GAO Jin-sheng. Pore structure characterization of coconut shell char with narrow microporosity[J]. Journal of Fuel Chemistry and Technology, 2019, 47(3): 297-305.
Citation: LI Wen-yue, WU Shi-yong, WU You-qing, HUANG Sheng, GAO Jin-sheng. Pore structure characterization of coconut shell char with narrow microporosity[J]. Journal of Fuel Chemistry and Technology, 2019, 47(3): 297-305.

Pore structure characterization of coconut shell char with narrow microporosity

Funds:

the Fundamental Research Funds for the Central Universities 222201718003

Projects of the Shanghai Science and Technology Committee 17DZ1202604

More Information
  • Corresponding author: WU Shi-yong, Tel & Fax: +86 2164252037, E-mail: wsy@ecust.edu.cn
  • Received Date: 2018-12-13
  • Rev Recd Date: 2019-01-16
  • Available Online: 2021-01-23
  • Publish Date: 2019-03-10
  • To get more insight into the pore structure characterization of nanoporous biomass chars, different probe molecules, models, and calibration steps were used and compared. The coconut shell chars (CSCs) were prepared under a steam atmosphere and characterized using N2, Ar, and CO2 adsorption. The results show that coconut shell chars are suitable for further activation, due to the high carbon content and abundant porosity. Ar adsorption with application of Non-Local Density Functional Theory (NLDFT) model can more accurately characterize the pore structure of CSC. When the calibration step is performed before adsorption measurement, the important results of N2 and Ar adsorption, such as pores size distribution (PSD) and isotherm, are affected by pore blocking, leading to the erroneous understanding of CSC in special applications. Vacuum treatment at 273 K for 1 h after He calibration is enough to remove He, which could reduce effect of pore blocking.
  • 本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http://www.sciencedirect.com/science/journal/18725813).
  • loading
  • [1]
    KHONDE R, CHAURASIA A. Rice husk gasification in a two-stage fixed-bed gasifier:Production of hydrogen rich syngas and kinetics[J].Int J Hydrogen Energy, 2016, 41(21):8793-8802. doi: 10.1016/j.ijhydene.2016.03.138
    [2]
    MARSH H, RODRÍGUEZ-REINOSO F. Applicability of Activated Carbon[M]. Amsterdam:Elsevier Science, 2006.
    [3]
    BENEDETTI V, PATUZZI F, BARATIERI M. Characterization of char from biomass gasification and its similarities with activated carbon in adsorption applications[J]. Appl Energy, 2018, 227:92-99. doi: 10.1016/j.apenergy.2017.08.076
    [4]
    LI W, LIU H F, SONG X X. Multifractal analysis of Hg pore size distributions of tectonically deformed coals[J]. Int J Coal Geol, 2015, 144-145:138-152. doi: 10.1016/j.coal.2015.04.011
    [5]
    ROUQUEROL J, AVNIR D, EVERETT D H, FAIRBRIDGE C, HAYNES M, PERNICONE N, RAMSAY J D F, SING K S W, UNGER K K. Guidelines for the characterization of porous solids[J]. Pure Appl Chem, 2009, 66(8):1739-1758. doi: 10.1016-S0167-2991(08)63059-1/
    [6]
    FIROUZI M, RUPP E C, LIU C W, WILCOX J. Molecular simulation and experimental characterization of the nanoporous structures of coal and gas shale[J]. Int J Coal Geol, 2014, 121(11):123-128. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1c99afdd79e210f1b7b44bbd8129f36f
    [7]
    HAO S X, WEN J, YU XP, CHU W. Effect of the surface oxygen groups on methane adsorption on coals[J]. Appl Surf Sci, 2013, 264:433-442. doi: 10.1016/j.apsusc.2012.10.040
    [8]
    GONZÁLEZ J F, ROMÁN S, GONZÁLEZ-GARCÍA C M, VALENTE NABAIS J M, LUIS ORTIZ A. Porosity development in activated carbons prepared from walnut shells by carbon dioxide or steam activation[J]. Ind Eng Chem Res, 2009, 48(16):7474-7481. doi: 10.1021/ie801848x
    [9]
    VARGAS D P, GIRALDO L, MORENO-PIRAJÁN J C. Characterisation of granular activated carbon prepared by activation with CaCl2 by means of gas adsorption and immersion calorimetry[J]. Adsorption, 2016, 22(4/6):717-723. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8f1a4a2dbdefdcb9043a7328c4b9111e
    [10]
    RIOS R V R A, SILVESTRE-ALBERO J, SEPÚLVEDA-ESCRIBANO A, MOLINA-SABIO M, RODRÍGUEZ-REINOSOKINETIC F. Restrictions in the characterization of narrow microporosity in carbon materials[J]. Ieice T Electron, 2011, 94(TENCON):1422-1426. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7d45718a83856fba888faadbdf3c23a2
    [11]
    LOWELL S, SHIELDS J E, THOMAS M A, THOMMES M. Characterization of porous solids and powders:Surface area, pore size and density[J]. Particle Technol, 2004, 16:1620. doi: 10.1007/978-1-4020-2303-3
    [12]
    TOSO J P, CORNETTE V, YELPO V A, ALEXANDRE DE OLIVEIRA J C, AZEVEDO D C S, LÓPEZ R H. Why the pore geometry model could affect the uniqueness of the PSD in AC characterization[J]. Adsorption, 2016, 22(2):215-222. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9dce76ec9a749e919473edc4d70020c9
    [13]
    SILVESTRE-ALBERO J, SILVESTRE-ALBERO A, RODRÍGUEZ-REINOSO F, THOMMES M. Physical characterization of activated carbons with narrow microporosity by nitrogen (77.4 K), carbon dioxide (273 K) and argon (87.3 K) adsorption in combination with immersion calorimetry[J]. Carbon, 2012, 50(9):3128-3133. doi: 10.1016/j.carbon.2011.09.005
    [14]
    EISAZADEH A, EISAZADEH H. N2-BET surface area and FESEM studies of lime-stabilized montmorillonitic and kaolinitic soils[J]. Environ Earth Sci, 2015, 74(1):377-384. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=36f559ae1be140a7b9a329f191f37ac7
    [15]
    USTINOV, EUGENE A. Nitrogen adsorption on silica surfaces of nonporous and mesoporous materials[J]. Langmuir, 2008, 24(13):6668-6675. doi: 10.1021/la704011z
    [16]
    YANG Z H, GAO Y. BET surface area analysis on microporous materials[J]. Mod Sci Instrum, 2010, (1):97-102. http://d.old.wanfangdata.com.cn/Periodical/xdkxyq201001027
    [17]
    JAGIELLO J, ANIA C O, PARRA J B, JAGIELLO L, PIS J J. Using DFT analysis of adsorption data of multiple gases including H for the comprehensive characterization of microporous carbons[J]. Carbon, 2007, 45(5):1066-1071. doi: 10.1016/j.carbon.2006.12.011
    [18]
    TALU O, MYERS A L. Molecular simulation of adsorption:Gibbs dividing surface and comparison with experiment[J]. AIChE J, 2010, 47(5):1160-1168. doi: 10.1002/aic.690470521/full
    [19]
    GUMMA S, TALU O. Gibbs dividing surface and helium adsorption[J]. Adsorption, 2003, 9(1):17-28. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0224788737/
    [20]
    HERRERA L, FAN C, DO D D, NICHOLSON D. A revisit to the Gibbs dividing surfaces and helium adsorption[J]. Adsorption, 2011, 17(6):955-965. doi: 10.1007/s10450-011-9374-y
    [21]
    NEIMARK A V, LIN Y, RAVIKOVITCH P I, THOMMES M. Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons[J]. Carbon, 2009, 47(7):1617-1628. doi: 10.1016/j.carbon.2009.01.050
    [22]
    SILVESTRE-ALBERO J, SILVESTREALBERO A M, LLEWELLYN P L, RODRIGUEZREINOSO F. High-resolution N2 adsorption isotherms at 77.4 K:Critical effect of the He used during calibration[J]. J Phys Chem B, 2013, 117(33):16885-16889. doi: 10.1021/jp405719a
    [23]
    HE Q, CAO Y, MIAO Z, REN X F, CHEN J. Estimation of pores distribution in lignite utilizing Hg, H2O, CO2 and N2 as molecular probes[J]. Energy Fuels, 2017, 31(12):13259-13265. doi: 10.1021/acs.energyfuels.7b02131
    [24]
    HUANG S, WU S Y, WU Y Q, GAO J S. Structure characteristics and gasification activity of residual carbon from updraft fixed-bed biomass gasification ash[J]. Energy Convers Manage, 2017, 136:108-118. doi: 10.1016/j.enconman.2016.12.091
    [25]
    DE LANGE M F, VLUGT T J H, GASCON J, KAPTEIJN F. Adsorptive characterization of porous solids:Error analysis guides the way[J]. Microporous Mesoporous Mater, 2014, 200:199-215. doi: 10.1016/j.micromeso.2014.08.048
    [26]
    OCCELLI M L, OLIVIER J P, PETRE A, AUROUX A. Determination of pore size distribution, surface area, and acidity in fluid cracking catalysts (FCCs) from Nonlocal Density Functional Theoretical models of adsorption and from microcalorimetry methods[J]. J Phys Chem B, 2003, 107(17):4128-4136. doi: 10.1021/jp022242m
    [27]
    XIONG J, LIU X J, LIANG L X. Experimental study on the pore structure characteristics of the upper ordovician wufeng formation shale in the southwest portion of the sichuan basin[J]. J Nat Gas Sci Eng, 2015, 22:530-539. doi: 10.1016/j.jngse.2015.01.004
    [28]
    FARAMARZI A H, KAGHAZCHI T, EBRAHIM H A, EBRAHIMI A A. A mathematical model for prediction of pore size distribution development during activated carbon preparation[J]. Chem Eng Commun, 2015, 202(2):131-143. doi: 10.1080/00986445.2013.830609
    [29]
    MOELLMER J, CELER E B, LUEBKE R, CAIRNS A J, STAUDT R, EDDAOUDI M, THOMMES M. Insights on adsorption characterization of metalorganic frameworks:A benchmark study on the novel socMOF[J]. Microporous Mesoporous Mater, 2010, 129(3):345-353. doi: 10.1016/j.micromeso.2009.06.014
    [30]
    OKOLO G N, EVERSON R C, NEOMAGUS H W J P, ROBERTS M J, SAKUROVS R. Comparing the porosity and surface areas of coal as measured by gas adsorption, mercury intrusion and SAXS techniques[J]. Fuel, 2015, 141:293-304. doi: 10.1016/j.fuel.2014.10.046
    [31]
    GIBBS J W. The Collected Works of J. W. Gibbs[M]. New York:Longmans and Green, 1928.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (89) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return