Volume 48 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
LIU Ya-jie, KANG He-fei, HOU Xiao-ning, ZHANG Lei, QING Shao-jun, GAO Zhi-xian, XIANG Hong-wei. Cu-Ni-Al spinel catalyzed methanol steam reforming for hydrogen production: Effect of Al content[J]. Journal of Fuel Chemistry and Technology, 2020, 48(9): 1112-1121.
Citation: LIU Ya-jie, KANG He-fei, HOU Xiao-ning, ZHANG Lei, QING Shao-jun, GAO Zhi-xian, XIANG Hong-wei. Cu-Ni-Al spinel catalyzed methanol steam reforming for hydrogen production: Effect of Al content[J]. Journal of Fuel Chemistry and Technology, 2020, 48(9): 1112-1121.

Cu-Ni-Al spinel catalyzed methanol steam reforming for hydrogen production: Effect of Al content

Funds:

the National Natural Science Foundation of China 21673270

Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi 2019L0880

Ph. D. Research Funding of Jinzhong University 2019

DNL Cooperation Fund DNL201908

More Information
  • Corresponding author: QING Shao-jun, E-mail:qingshaojun@sxicc.ac.cn, +86-13623660440; GAO Zhi-xian, E-mail:gaozx@lnpu.edu.cn, Tel:+86-13934511591
  • Received Date: 2020-08-06
  • Rev Recd Date: 2020-08-27
  • Available Online: 2021-01-23
  • Publish Date: 2020-09-10
  • Cu-Ni-Al ternary spinel solid solution catalysts with different Al content are prepared by the solid-phase ball milling method. The characterizations with XRD, H2-TPR, BET and XPS, and catalytic performance testing are carried out to study the effects of Al content on the physicochemical properties of the Cu-Ni-Al spinels and their sustained release catalytic performances in methanol steam reforming for hydrogen production. Characterization results show a significant increase in the specific surface area and pore volume of the catalysts with increasing the Al content (Al = 2, 3, 4) at a constant Cu/Ni molar ratio of 0.95:0.05. At the same time, both the cell parameters and crystallite sizes of Cu-Ni-Al spinel solid solutions decrease, and the catalysts become difficult to be reduced. Furthermore, the content of spinel Ni2+ increases slightly while the spinel Cu2+ decreases significantly, leading to a declined total content of spinel Cu2+ plus Ni2+. The results also indicate that the presence of Ni2+ inhibits the formation of spinel Cu2+. Surface analysis results show that the increase of Al content transforms the catalyst surface composition from Cu-rich to Al-rich, and the surface spinel Cu2+ decreases, but it is still higher than the spinel bulk. The catalyst testing results show that as the Al content in the catalysts increases, the initial activity increases notably, and the CO selectivity decreases, but too much Al results in an inferior catalytic stability. In general, the catalyst with an Al = 3 shows a better catalytic performance in terms of activity and stability. The results of this paper demonstrate that there is an optimal Al content for the Cu-Ni-Al spinel solid solutions used as the sustained release catalysts, playing a crucial role in obtaining high catalytic stability.
  • loading
  • [1]
    符冠云.氢能在我国能源转型中的地位和作用[J].中国煤炭, 2019, 45(10):15-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgmt201910004

    FU Guan-yun. The status and role of hydrogen energy in China's energy transformation[J]. China Coal, 2019, 45(10):15-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgmt201910004
    [2]
    FASANYA O O, AL-HAJRI R, AHMED O U, MYINT M T Z, ATTA A Y, JIBRIL B Y, DUTTA J. Copper zinc oxide nanocatalysts grown on cordierite substrate for hydrogen production using methanol steam reforming[J]. Int J Hydrogen Energy, 2019, 44(41):22936-22946. doi: 10.1016/j.ijhydene.2019.06.185
    [3]
    MATSUKAT M, UEMIYA S, KIKUCHI E. Copper-alumina spinel catalysts for steam reforming of methanol[J]. Chem Lett, 1988, 17(5):761-764. doi: 10.1246/cl.1988.761
    [4]
    FUKUNAGA T, RYUMON N, ICHIKUNI N, SHIMAZU S. Characterization of CuMn-spinel catalyst for methanol steam reforming[J]. Catal Commun, 2009, 10(14):1800-1803. doi: 10.1016/j.catcom.2009.06.001
    [5]
    MAITI S, DAS D, PAL K, LLORCA J, SOLER L, COLUSSI S, TROVARELLI A, PRIOLKAR K R, SARODE P R, ASAKURA K, SEIKH M M, GAYEN A. Methanol steam reforming behavior of sol-gel synthesized nanodimensional CuxFe1-xAl2O4 hercynites[J]. Appl Catal A:Gen, 2019, 570:73-83. doi: 10.1016/j.apcata.2018.11.011
    [6]
    HWANG B-Y, SAKTHINATHAN S, CHIU T-W. Production of hydrogen from steam reforming of methanol carried out by self-combusted CuCr1-xFexO2 (x=0-1) nanopowders catalyst[J]. Int J Hydrogen Energy, 2019, 44(5):2848-2856. doi: 10.1016/j.ijhydene.2018.12.052
    [7]
    SICKAFUS K E, WILLS.J M. Structure of spinel[J]. J Am Ceram Soc, 1999, 82(12):3279-3292.
    [8]
    XI H J, HOU X N, LIU Y J, QING S J, GAO Z X. Cu-Al spinel oxide as an efficient catalyst for methanol steam reforming[J]. Angew Chem Int Ed, 2014, 53(44):11886-11889. doi: 10.1002/anie.201405213
    [9]
    LIU Y J, QING S J, HOU X N, QIN F J, WANG X, GAO Z X, XIANG H W. Cu-Ni-Al spinel oxide as an efficient durable catalyst for methanol steam reforming[J]. ChemCatChem, 2018, 10(24):5698-5706. doi: 10.1002/cctc.201801472
    [10]
    LIU Y J, QING S J, HOU X N, QIN F J, WANG X, GAO Z X, XIANG H W. Temperature dependence of Cu-Al spinel formation and its catalytic performance in methanol steam reforming[J]. Catal Sci Technol, 2017, 7(21):5069-5078. doi: 10.1039/C7CY01236E
    [11]
    刘雅杰, 庆绍军, 侯晓宁, 张磊, 高志贤, 相宏伟. Cu-Al尖晶石的合成及非等温生成动力学分析[J].燃料化学学报, 2020, 48(3):338-348. http://www.ccspublishing.org.cn/article/id/32b9d22d-611e-4472-b517-ec5c891ee8c3

    LIU Ya-jie, QING Shao-jun, HOU Xiao-ning, ZHANG Lei, GAO Zhi-xian, XIANG Hong-wei.Synthesis of Cu-Al spinels and its non-isothermal formation kinetics analysis[J]. J Fuel Chem Technol, 2020, 48(3):338-348. http://www.ccspublishing.org.cn/article/id/32b9d22d-611e-4472-b517-ec5c891ee8c3
    [12]
    QIN F J, LIU Y J, QING S J, HOU X N, GAO Z X. Cu-Al spinel as a sustained release catalyst for H2 production from methanol steam reforming:Effects of different copper sources[J]. J Fuel Chem Technol, 2017, 45(12) 1481-1488. doi: 10.1016/S1872-5813(17)30065-8
    [13]
    QING S J, HOU X N, LIU Y J, LI L D, WANG X, GAO Z X, FAN W B. Strategic use of CuAlO2 as a sustained release catalyst for production of hydrogen from methanol steam reforming[J]. Chem Commun, 2018, 54(86):12242-12245. doi: 10.1039/C8CC06600K
    [14]
    HOU X N, QING S J, LIU Y J, LI L D, GAO Z X, Qin Y. Enhancing effect of MgO modification of Cu-Al spinel oxide catalyst for methanol steam reforming[J]. Int J Hydrogen Energy, 2019, 45(1):477-489.
    [15]
    庆绍军, 侯晓宁, 刘雅杰, 王磊, 李林东, 高志贤. Cu-Ni-Al尖晶石催化甲醇水蒸气重整制氢性能的研究[J].燃料化学学报, 2018, 46(10):1210-1217. http://www.ccspublishing.org.cn/article/id/b14d7a58-9df6-4e70-aff6-8011a66c65ea

    QING Shao-jun, HOU Xiao-ning, LIU Ya-jie, WANG Lie, LI Lin-dong, GAO Zhi-xian. Catalytic performance of Cu-Ni-Al spinel for methanol steam reforming to hydrogen[J]. J Fuel Chem Technol, 2018, 46(10):1210-1217. http://www.ccspublishing.org.cn/article/id/b14d7a58-9df6-4e70-aff6-8011a66c65ea
    [16]
    HOU X N, QIN F J, QING S J, LIU Y J, LI L D, GAO Z X, QIN Y. Probing the existing state of Cu(ii) in a Cu-Al spinel catalyst using N2O decomposition reaction with the aid of conventional characterizations[J]. Catal Sci Technol, 2019, 9(11):2993-3001. doi: 10.1039/C9CY00563C
    [17]
    HILL M R, BASTOW T J, CELOTTO S, HILL A J. Integrated study of the calcination cycle from gibbsite to corundum[J]. Chem Mater, 2007, 19:2877-2883. doi: 10.1021/cm070078f
    [18]
    MILLER M E, MISTURE S T. Idealizing γ-Al2O3:In situ determination of nonstoichiometric spinel defect structure[J]. J Phys Chem C, 2010, 114:13039-13046. doi: 10.1021/jp102759y
    [19]
    RYNKOWSKI J M, PARYJCZAK T, LENIK M. On the nature of oxidic nickel phases in NiO/γ-Al2O3 catalysts[J]. Appl Catal A:Gen, 1993, 106:73-82. doi: 10.1016/0926-860X(93)80156-K
    [20]
    MORETTI G, FIERRO G, JACONO M L, PORTA P. Characterization of CuO-ZnO catalysts by X-ray photoelectron spectroscopy:Precursors, calcined and reduced samples[J]. Surf Interface Anal, 1989, 14(6/7):325-336.
    [21]
    FIGUEIREDO R T, MARTÍNEZ-ARIAS A, GRANADOS M L, FIERRO J L G. Spectroscopic evidence of Cu-Al interactions in Cu-Zn-Al mixed oxide catalysts used in CO hydrogenation[J]. J Catal, 1998, 178:146-152. doi: 10.1006/jcat.1998.2106
    [22]
    BAHMANPOUR A M, HÉROGUEL F, KILIÇ M, BARANOWSKI C J, SCHOUWINK P, RÖTHLISBERGER U, LUTERBACHER J S, KRÖCHER O. Essential role of oxygen vacancies of Cu-Al and Co-Al spinel oxides in their catalytic activity for the reverse water gas shift reaction[J]. Appl Catal B:Environ, 2020, 266(118669):1-8.
    [23]
    ERTL G, HIERL R, KNÖZINGER H, THIELE N, URBACH H P. XPS study of copper aluminate catalysts[J]. Appl Surf Sci, 1980, 5:49-64. doi: 10.1016/0378-5963(80)90117-8
    [24]
    WAGNER C D, DAVIS L E, ZELLER M V, TAYLOR J A, RAYMOND R H, GALE L H. Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis[J]. Surf Interface Anal, 1981, 3(5):211-225. doi: 10.1002/sia.740030506
    [25]
    SHIMIZU K-I, MAESHIMA H, YOSHIDA H, SATSUMA A, HATTORI T. Spectroscopic characterisation of Cu-Al2O3 catalysts for selective catalytic reduction of NO with propene[J]. Phys Chem Chem Phys, 2000, 2(10):2435-2439. doi: 10.1039/b000943l
    [26]
    NG K T, HERCULE D M. Studies of nickel-tungsten-alumina catalysts by X-ray photoelectron spectroscopy[J]. J Phys Chem, 1976, 80:2094-2102. doi: 10.1021/j100560a009
    [27]
    MATSUMURA Y, TANAKA K, TODE N, YAZAWA T, HARUTA M. Catalytic methanol decomposition to carbon monoxide and hydrogen over nickel supported on silica[J]. J Mol Catal A:Chem, 2000, 152:157-165. doi: 10.1016/S1381-1169(99)00282-4
    [28]
    FURUHASHI H, INAGAKI M, NAKA S. Determination of cation distribution in spinels by X-ray diffraction method[J]. J Inorg Nucl Chem, 1973, 35:3009-3014. doi: 10.1016/0022-1902(73)80531-7
    [29]
    LATHE C, GUSE W, SAALFELD H, HAMBURG, FREIMANN S, RAHMAN S H. Interpretation of σ-Al2O3 real structure by means of X-ray investigations and the videographic method[J]. N Jb Miner Abh, 1999, 174:293-304.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (297) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return