Volume 45 Issue 9
Sep.  2017
Turn off MathJax
Article Contents
CHEN Yi-long, SUN Jia-qiang, ZHANG Yan-feng, ZHENG Shen-ke, WANG Bu-huan, CHEN Zheng, XUE Ying-ying, CHEN Min, Mohamed Abbas, CHEN Jian-gang. CoFe2O4 nanoarray catalysts for Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2017, 45(9): 1082-1087.
Citation: CHEN Yi-long, SUN Jia-qiang, ZHANG Yan-feng, ZHENG Shen-ke, WANG Bu-huan, CHEN Zheng, XUE Ying-ying, CHEN Min, Mohamed Abbas, CHEN Jian-gang. CoFe2O4 nanoarray catalysts for Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2017, 45(9): 1082-1087.

CoFe2O4 nanoarray catalysts for Fischer-Tropsch synthesis

Funds:

National Natural Science Foundation of China 21503256

National Natural Science Foundation of China 21373254

autonomous research project of State Key Laboratory of Coal Conversion SKLCC2013BWZ004

More Information
  • Corresponding author: CHEN Jian-gang, 0431-85583121, E-mail:chenjg@sxicc.ac.cn
  • Received Date: 2017-05-16
  • Rev Recd Date: 2017-06-30
  • Available Online: 2021-01-23
  • Publish Date: 2017-09-10
  • CoFe2O4 nanoarray catalysts were fabricated on iron foam by a controlled process involving the hydrothermal growth and calcinations of iron-doped cobalt carbonate hydroxide hydrate (CoFe-CHH) nanowires precursors.The crystalline phase, microstructure and component of CoFe2O4 nanoarrays were characterized by powder X-ray diffraction (XRD), scanning electron microscope (SEM) and inductively coupled plasma atomic emission spectroscopy (ICP-AES).The produced catalysts were used for Fischer-Tropsch synthesis and the nanoarray catalysts displayed a high CO conversion rate of 69% at 5L/(g·h) and a better performance than powder catalysts.
  • 本文的英文电子版由 Elsevier 出版社在 ScienceDirect 上出版(http://www.sciencedirect.com/science/journal/18725813).
  • loading
  • [1]
    DRY M E. The Fischer-Tropsch process:1950-2000[J]. Catal Today, 2002, 71(3/4):227-241. http://www.sciencedirect.com/science/article/pii/S0920586101004539
    [2]
    ZHANG Q, CHENG K, KANG J, DENG W, WANG Y. Fischer-Tropsch catalysts for the production of hydrocarbon fuels with high selectivity[J]. ChemSusChem, 2014, 7(5):1251-1264. doi: 10.1002/cssc.201300797
    [3]
    ZHANG Q, KANG J, WANG Y. Development of novel catalysts for Fischer-Tropsch synthesis:Tuning the product selectivity[J]. ChemCatChem, 2011, 2(9):1030-1058.
    [4]
    DAVIS B H. Overview of reactors for liquid phase Fischer-Tropsch synthesis[J]. Catal Today, 2002, 71(3/4):249-300. http://www.sciencedirect.com/science/article/pii/S0920586101004552
    [5]
    HOSUKOGLU M I, KARAKAYA M, AVCI A K. Modeling and simulation of hydrocracking of Fischer-Tropsch hydrocarbons in a catalytic microchannel reactor[J]. Ind Eng Chem Res, 2012, 51(26):8913-8921. doi: 10.1021/ie202213n
    [6]
    DU X, ZHANG D, SHI L, GAO R, ZHANG J. Coke-and sintering-resistant monolithic catalysts derived from in situ supported hydrotalcite-like films on Al wires for dry reforming of methane[J]. Nanoscale, 2013, 5(7):2659-63. doi: 10.1039/c3nr33921a
    [7]
    GUETTEL R, KNOCHEN J, KUNZ U, KASSING M, TUREK T. Preparation and catalytic evaluation of cobalt-based monolithic and powder catalysts for Fischer-Tropsch synthesis[J]. Ind Eng Chem Res, 2008, 47(47):6589-6597. doi: 10.1021/ie800377n
    [8]
    DESHMUKH S R, TONKOVICH A L Y, KAI T J, SCHRADER L, FITZGERALD S P. Scale-up of microchannel reactors for Fischer-Tropsch synthesis[J]. Ind Eng Chem Res, 2010, 49(49):10883-10888. doi: 10.1021/ie100518u
    [9]
    VENVIK H J, YANG J. Catalysis in microstructured reactors:Short review on small-scale syngas production and further conversion into methanol, DME and Fischer-Tropsch products[J]. Catal Today, 2017, 285:135-146. doi: 10.1016/j.cattod.2017.02.014
    [10]
    GORAZD BER-I-. Through control of wetting and drying conditions of monolithic supports toward a uniform catalyst distribution[J]. Dry Technol, 2015, 33(1):72-82. doi: 10.1080/07373937.2014.934829
    [11]
    VERGUNST T, KAPTEIJN F, MOULIJN J A. Monolithic catalysts-non-uniform active phase distribution by impregnation[J]. Appl Catal A:Gen, 2001, 213(2):179-187. doi: 10.1016/S0926-860X(00)00896-6
    [12]
    HAMID S B A, SCHLÖGL R. The Impact of Nanoscience in Heterogeneous Catalysis[M], The Nano-Micro Interface:Bridging the Micro and Nano Worlds. Wiley-VCH Verlag GmbH & Co. KGaA, 2015:405-430.
    [13]
    SUN J, LI Y, LIU X, YANG Q, LIU J, SUN X, EVANS D G, DUAN X. Hierarchical cobalt iron oxide nanoarrays as structured catalysts[J]. Chem Commun, 2012, 48(28):3379-3381. doi: 10.1039/c2cc17368a
    [14]
    YANG Q, LU Z, LIU J, LEI X, CHANG Z, LUO L, SUN X. Metal oxide and hydroxide nanoarrays:Hydrothermal synthesis and applications as supercapacitors and nanocatalysts[J]. Prog Nat Sci Mater, 2013, 23(4):351-366. doi: 10.1016/j.pnsc.2013.06.015
    [15]
    SUN J, ZHENG S, ZHANG K, SONG D, LIU Y, SUN X, CHEN J. The crystal plane effect of CoFe nanocrystals on Fischer-Tropsch synthesis[J]. J Mater Chem A, 2014, 2(32): 13116-13122. doi: 10.1039/C4TA02425G
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (107) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return