Volume 47 Issue 6
Jun.  2019
Turn off MathJax
Article Contents
XIAO Zhu-qian, ZHANG Qiang, WANG Xiao-lei, GE Qing, GAI Xi-kun, MAO Jian-wei, JI Jian-bing. Organic nitrogen promotes stability of metallic catalysts in conversion of bamboo pulp to low carbon polyols[J]. Journal of Fuel Chemistry and Technology, 2019, 47(6): 675-687.
Citation: XIAO Zhu-qian, ZHANG Qiang, WANG Xiao-lei, GE Qing, GAI Xi-kun, MAO Jian-wei, JI Jian-bing. Organic nitrogen promotes stability of metallic catalysts in conversion of bamboo pulp to low carbon polyols[J]. Journal of Fuel Chemistry and Technology, 2019, 47(6): 675-687.

Organic nitrogen promotes stability of metallic catalysts in conversion of bamboo pulp to low carbon polyols

Funds:

and Technology Project of Zhejiang Province 2017C37049

More Information
  • Corresponding author: MAO Jian-wei, Tel: +86 13805790850, E-mail: shaw1314@126.com, zjhzmjw@163.com
  • Received Date: 2019-02-19
  • Rev Recd Date: 2019-04-03
  • Available Online: 2021-01-23
  • Publish Date: 2019-06-10
  • Herein, the synthesis and performance of a novel and stable catalyst capable of facile hydrolysis of bamboo pulp were reported. Based on adopting complex agent to have a complex reaction with Ni2+ cations, the graphitic g-C3N4 phase and nitride phases were formed eventually. The interaction among metals and C, N atoms was analyzed by XRD and XPS. Some Ni-W alloys (mainly NiWO4 was included) were formed besides metallic Ni0 and tungsten species characterized. Particles on the surface of 15%Ni-20%W/MBC@M-0.25 catalyst exhibited homogeneous distribution and surrounded by disordered C3N4 layer characterized by TEM. Besides, the organic N sources were decomposed and the C3N4 phase with high hydrothermal property was formed simultaneously. For catalytic efficiency, 15%Ni-20%W/MBC@M-0.25 catalyst acquired the highest EG yield of 55.8% compared to 36.9% via 15%Ni-20%W/MBC catalysts. The carbon supports and organic nitrogen sources demonstrated great influence on catalytic efficiency. Catalyst recycle experiments implied that Ni-W/MBC@M-0.25 could remain relative stable under this catalytic reaction condition. The Ni-W alloys and the C3N4 phase were deduced as the main contributors to maintain the catalyst stability.
  • loading
  • [1]
    KUMAR A K, SHARMA S. Recent updates on different methods of pretreatment of lignocellulosic feedstocks:A review[J]. Bioresour Bioprocess, 2017, 4(1):7-25. doi: 10.1186/s40643-017-0137-9
    [2]
    JI N, ZHANG T, ZHENG M Y, WANG A Q, WANG H, WANG X D, CHEN J G. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts[J]. Angew Chem, 2008, 120(44):8638-8641. doi: 10.1002/ange.v120:44
    [3]
    WANG A Q, ZHANG T. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts[J]. Acc Chem Res, 2013, 46(7):1377-1386. doi: 10.1021/ar3002156
    [4]
    KIM K H, DUTTA T, SUN J, SIMMONS B, SINGH S. Biomass pretreatment using deep eutectic solvents from lignin derived phenols[J]. Green Chem, 2018, 20(4):809-815. doi: 10.1039/C7GC03029K
    [5]
    LUO H, ABU-OMAR M M. Lignin extraction and catalytic upgrading from genetically modified poplar[J]. Green Chem, 2018, 20(3):745-753. doi: 10.1039/C7GC03417B
    [6]
    DIETRICK K, HERNANDEZ-MEJIA C, VERSCHUREN P, ROTHENBERG G, SHIJU N R. One-pot selective conversion of hemicellulose to xylitol[J]. Org Process Res Dev, 2017, 21(2):165-170. doi: 10.1021/acs.oprd.6b00169
    [7]
    ZHANG Z H, HUBER G W. Catalytic oxidation of carbohydrates into organic acids and furan chemicals[J]. Chem Soc Rev, 2018, 47(4):1351-1390. http://www.ncbi.nlm.nih.gov/pubmed/29297525
    [8]
    XU G, WANG A Q, PANG J F, ZHAO X C, XU J M, LEI N, WANG J, ZHENG M Y, YIN J Z, ZHANG T. Chemocatalytic conversion of cellulosic biomass to methyl glycolate, ethylene glycol, and ethanol[J]. ChemSusChem, 2017, 10(7):1390-1394. doi: 10.1002/cssc.v10.7
    [9]
    DING D Y, ZHOU X, YOU T T, ZHANG X, ZHANG X M, XU F. Exploring the mechanism of high degree of delignification inhibits cellulose conversion efficiency[J]. Carbohydr Polym, 2017, 181(2):931-938. http://www.sciencedirect.com/science/article/pii/S0144861717313437
    [10]
    SHINOHARA N, SUNAGAWA N, TAMURA S, YOKOYAMA R, UEDA M, IGARASHI K, NISHITANI K. The plant cell-wall enzyme AtXTH3 catalyses covalent cross-linking between cellulose and cellooligosaccharide[J]. Sci Rep, 2017, 7(4):46099-46108. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5405413/
    [11]
    ZHENG J, CHOO K, REHMANN L. Xylose removal from lignocellulosic biomass via a twin-screw extruder:The effects of screw configurations and operating conditions[J]. Biomass Bioenergy, 2016, 88(5):10-16. http://www.sciencedirect.com/science/article/pii/S0961953416300617
    [12]
    HAMDY M S, EISSA M A, KESHK S M A S. New catalyst with multiple active sites for selective hydrogenolysis of cellulose to ethylene glycol[J]. Green Chem, 2017, 19(21):5144-5151. doi: 10.1039/C7GC02122D
    [13]
    XIAO Z Q, FAN Y, CHENG Y J, ZHANG Q, GE Q, SHA R Y, JI J B, Mao J W. Metal particles supported on SiO2-OH nanosphere:New insight into interactions with metals for cellulose conversion to ethylene glycol[J]. Fuel, 2018, 215(3):406-416. http://www.sciencedirect.com/science/article/pii/S0016236117314898
    [14]
    WANG Y Z, DE S, YAN N. Rational control of nano-scale metal-catalysts for biomass conversion[J]. Chem Commun, 2016, 52(37):6210-6224. doi: 10.1039/C6CC00336B
    [15]
    BAEK I G, YOU S J, PARK E D. Direct conversion of cellulose into polyols over Ni/W/SiO2-Al2O3[J]. Bioresour Technol, 2012, 114(3):684-690. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7d066352839492093ed2a3b75a1dbd6b
    [16]
    LIU H L, HUANG Z W, XIA C G, JIA Y Q. Selective hydrogenolysis of xylitol to ethylene glycol and propylene glycol over silica dispersed copper catalysts prepared by a precipitation-gel method[J]. ChemCatChem, 2014, 6(10):2918-2928. doi: 10.1002/cctc.v6.10
    [17]
    YANG Y, ZHANG W, YANG F, BROWN D E, REN Y, LEE S, ZENG D H, GAO Q, ZHANG X. Versatile nickel-tungsten bimetallics/carbon nanofiber catalysts for direct conversion of cellulose to ethylene glycol[J]. Green Chem, 2016, 18(14):3949-3955. doi: 10.1039/C6GC00703A
    [18]
    FUKUOKA A, DHEPE P L. Catalytic conversion of cellulose into sugar alcohols[J]. Angew Chem Int Ed, 2006, 118(12):5285-5287. http://www.cnki.com.cn/Article/CJFDTOTAL-JBXG201707004.htm
    [19]
    RIBEIRO L S, DELGADO J J, ÍRFAO J J M, PEREIRA M F R. Carbon supported Ru-Ni bimetallic catalysts for the enhanced one-pot conversion of cellulose to sorbitol[J].Appl Catal B:Environ, 2017, 217(15):265-274. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ae5377def905b680ac11b54bb9c6bf05
    [20]
    HAUSOUL P J C, BEINE A K, NEGHADAR L, PALKOVITS R. Kinetics study of the Ru/C-catalysed hydrogenolysis of polyols-insight into the interactions with the metal surface[J]. Catal Sci Technol, 2017, 7(1):56-63. doi: 10.1039/C6CY02104B
    [21]
    ZHENG M Y, WANG A Q, JI N, PANG J F, WANG X D, ZHANG T. Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol[J]. ChemSusChem, 2010, 3(1):63-66. doi: 10.1002/cssc.v3:1
    [22]
    LI N X, ZHENG Y, WEI LF, TENG H C, ZHOU J C. Metal nanoparticles supported on WO3 nanosheets for highly selective hydrogenolysis of cellulose to ethylene glycol[J]. Green Chem, 2017, 19(3):682-691. doi: 10.1039/C6GC01327A
    [23]
    XIAO Z Q, ZHANG Q, CHEN T T, WANG X N, FAN Y, GE Q, ZHAI R, SUN R, JI JB, MAO J W. Heterobimetallic catalysis for lignocellulose to ethylene glycol on nickel tungsten catalysts:Influenced by hydroxy groups[J]. Fuel, 2018, 230(8):332-343. http://www.sciencedirect.com/science/article/pii/S0016236118307488
    [24]
    TAI Z J, ZHANG J Y, WANG A Q, ZHENG M Y, ZHANG T. Temperature-controlled phase-transfer catalysis for ethylene glycol production from cellulose[J]. Chem Commun, 2012, 48(56):7052-7054. doi: 10.1039/c2cc32305b
    [25]
    OOMS R, DUSSELIER M, GEBOERS J A, BEECK B O D, VERHAEVEN R, GOBECHIYA E, MARTENS J A, REDL A, SELS B F. Conversion of sugars to ethylene glycol with nickel tungsten carbide in a fed-batch reactor:High productivity and reaction network elucidation[J]. Green Chem, 2014, 16(2):695-707. doi: 10.1039/C3GC41431K
    [26]
    WANG J, WEI Z Z, MAO S J, LI H R, WANG Y. Highly uniform Ru nanoparticles over N-doped carbon:pH and temperature-universal hydrogen release from water reduction[J]. Energy Environ Sci, 2018, 11(4):800-806. doi: 10.1039/C7EE03345A
    [27]
    CHEN X L, ZHENG J, ZHONG X, JIN Y H, ZHUANG G L, LI X N, DENG S W, WANG J G. Tuning the confinement space of N-carbon shell coated ruthenium nanoparticles:Highly efficient electrocatalysts for hydrogen evolution reaction[J]. Catal Sci Technol, 2017, 7(7):4964-4970. https://www.researchgate.net/publication/319907542_Tuning_The_Confinement_Space_of_N-Carbon_Shell-Coated_Ruthenium_Nanoparticles_Highly_Efficient_Electrocatalysts_for_Hydrogen_Evolution_Reaction
    [28]
    DU X D, YI X H, WANG P, DENG J G, WANG C C. Enhanced photocatalytic Cr(Ⅵ) reduction and diclofenac sodium degradation under simulated sunlight irradiation over MIL-100(Fe)/g-C3N4 heterojunctions[J]. Chin J Catal, 2019, 40(1):70-79. http://en.cnki.com.cn/Article_en/CJFDTotal-CHUA201901009.htm
    [29]
    HUANG L Y, XU H, LI Y P, LI H M, CHENG X N, XIA J X, XU Y G, CAI G B. Visible-light-induced WO3/g-C3N4 composites with enhanced photocatalytic activity[J]. Dalton Trans, 2013, 42(24):8606-8616. doi: 10.1039/c3dt00115f
    [30]
    PAN G Y, MA Y L, MA X X, SUN Y G, LV J M, ZHANG J L. Catalytic hydrogenation of corn stalk into polyol over Ni-W/MCM-41 catalyst[J]. Chem Eng J, 2016, 299(1):386-392. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=102c137e7fd7ee55265f71dd3e165299
    [31]
    YAN C C, LIN L, WANG GX, BAO X H. Transition metal-nitrogen sites for electrochemical carbon dioxide reduction reaction[J]. Chin J Catal, 2019, 40(1):23-37. http://d.old.wanfangdata.com.cn/Periodical/cuihuaxb201901004
    [32]
    XIANG Q J, YU J G, JARONIEC M. Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites[J]. J Phys Chem C, 2011, 115(15):7355-7363. doi: 10.1021/jp200953k
    [33]
    NAZARIAN-SAMANI M, MOBARRA R, KAMALI A R, NAZARIAN-SAMANI M. Structural evolution of nanocrystalline nickel-tungsten alloys upon mechanical alloying with subsequent annealing[J]. Metall Mater Trans A, 2014, 45(1):510-521. doi: 10.1007/s11661-013-1960-z
    [34]
    SUDARSANAM P, ZHONG R Y, BOSCH S V D, COMAN S M, PARVULESCU V I, SELS B F. Functionalised heterogeneous catalysts for sustainable biomass valorisation[J]. Chem Soc Rev, 2018, 47(5):8349-8402. http://pubs.rsc.org/en/content/articlelanding/2018/cs/c8cs00410b
    [35]
    LI X H, KURASCH S, KAISER U, ANTONIETTI M. Synthesis of monolayer-patched graphene from glucose[J]. Angew Chem Int Ed, 2012, 51(38):9689-9692. doi: 10.1002/anie.v51.38
    [36]
    PUTRO W S, KOJIMA T, HARA T, ICHIKUNI N, SHIMAZU S. Selective hydrogenation of unsaturated carbonyls by Ni-Fe-based alloy catalysts[J]. Catal Sci Technol, 2017, 7(16):3637-3646. doi: 10.1039/C7CY00945C
    [37]
    BOONYONGMANEERAT Y, SAENGKIETTIYUT K, SAENGPITAK S, SANGSUK S. Pulse co-electrodeposition and characterization of NiW-WC composite coatings[J]. J Alloys Compd, 2010, 506(1):151-154. doi: 10.1016/j.jallcom.2010.06.162
    [38]
    HONG S H, AHN S H, CHOI J, KIM J Y, KIM H Y, KIM H J, JIANG J H, KIM H, KIM S K. High-activity electrodeposited NiW catalysts for hydrogen evolution in alkaline water electrolysis[J]. Appl Surf Sci, 2015, 349(5):629-635. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5a89a948961e531dbd48d5b1dd53d40a
    [39]
    DI V C, VALENTIN G. Spectroscopic properties of doped and defective semiconducting oxides from hybrid density functional calculations[J]. Acc Chem Res, 2014, 47(11):3233-3241. doi: 10.1021/ar4002944
    [40]
    HUANG Z F, SONG J J, PAN L, ZHANG X W, WANG L, ZOU J J. Tungsten oxides for photocatalysis, electrochemistry and phototherapy[J].Adv Mater, 2015, 27(36):5309-5327. doi: 10.1002/adma.201501217
    [41]
    ZHANG S M, ZHANG H Y, ZHANG W M, YUAN X X, CHEN S L, MA Z F. Induced growth of Fe-Nx active sites using carbon templates[J]. Chin J Catal, 2018, 39(8):1427-1435. doi: 10.1016/S1872-2067(18)63107-9
    [42]
    XIANG Q J, YU J G, JARONIEC M. Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites[J]. J Phys Chem C, 2011, 115(15):7355-7363. doi: 10.1021/jp200953k
    [43]
    YAN S C, LI Z S, ZOU Z G. Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation[J]. Langmuir, 2010, 26(6):3894-3901. doi: 10.1021/la904023j
    [44]
    SUN Y Q, LI C, XU Y X, SHI G Q. Chemically converted graphene as substrate for immobilizing and enhancing the activity of a polymeric catalyst[J]. Chem Commun, 2010, 46(26):4740-4742. doi: 10.1039/c001635g
    [45]
    FABICOVICOVA K, LUCAS M, CLAUS P. From microcrystalline cellulose to hard-and softwood-based feedstocks:Their hydrogenolysis to polyols over a highly efficient ruthenium-tungsten catalyst[J]. Green Chem, 2015, 17(15):3075-3083. http://www.researchgate.net/publication/273957745_From_microcrystalline_cellulose_to_hard-_and_softwood-based_feedstocks_their_hydrogenolysis_to_polyols_over_a_highly_efficient_ruthenium-tungsten_catalyst
    [46]
    ZHOU L K, WANG A Q, LI C Z, ZHENG M Y, ZHANG T. Selective production of 1, 2-propylene glycol from Jerusalem Artichoke tuber using Ni-W2C/AC catalysts[J]. ChemSusChem 2012, 5(5):932-938. doi: 10.1002/cssc.201100545
    [47]
    ZEMANOVA M, KRIVOSUDSKA M, CHOVANCOVA M, JORIK V. Pulse current electrodeposition and corrosion properties of Ni-W alloy coatings[J]. J Appl Electrochem, 2011, 41(11):1077-1085. doi: 10.1007/s10800-011-0331-y
    [48]
    AMANIAMPONG P N, KARAM A, TTINK Q T, XU K, HIRAO H, JEROME F, CHATEL G. Selective and catalyst-free oxidation of D-Glucose to D-Glucuronic acid induced by high-Frequency ultrasound[J]. Sci Rep, 2017, 7(2):40650-40657. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5233993/
    [49]
    AHMADI M, GUINEL M J F. Electrodeposition and characterization of amorphous-nanocrystalline nickel-tungsten alloys[J]. Microsc Microanal, 2012, 18(S2):1694-1695. doi: 10.1017/S143192761201032X
    [50]
    LIU H L, QIN L, WANG X Y, DU C H, SUN D, MENG X C. Hydrolytic hydro-conversion of cellulose to ethylene glycol over bimetallic CNTs-supported NiWB amorphous alloy catalyst[J]. Catal Commun, 2016, 77(14):47-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=622a5a3bba91fb2f2c63730db3374699
    [51]
    PEREYMA V Y, KLIMOV O V, PROSVITIN I P, GERASIMOV E Y, YASHNIK S A, NOSKOV A S. Effect of thermal treatment on morphology and catalytic performance of NiW/Al2O3 catalysts prepared using citric acid as chelating agent[J]. Catal Today, 2018, 305(7):162-170. http://www.sciencedirect.com/science/article/pii/S0920586117305023
    [52]
    LI X H, ZHANG J, ZHOU F, ZHANG H L, BAI J, WANG Y J, WANG H Y. Preparation of N-vacancy-doped g-C3N4 with outstanding photocatalytic H2O2 production ability by dielectric barrier discharge plasma treatment[J]. Chin J Catal, 2018, 39(6):1090-1098. doi: 10.1016/S1872-2067(18)63046-3
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (84) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return