Volume 46 Issue 3
Mar.  2018
Turn off MathJax
Article Contents
ZHANG Li-xiang, ZHANG An-chao, ZHU Qi-feng, WANG Hua, ZHANG Chun-jing. Effects of experimental parameters on Hg0 removal over magnetic AgI-BiOI/CoFe2O4 photocatalysts using wet process[J]. Journal of Fuel Chemistry and Technology, 2018, 46(3): 365-374.
Citation: ZHANG Li-xiang, ZHANG An-chao, ZHU Qi-feng, WANG Hua, ZHANG Chun-jing. Effects of experimental parameters on Hg0 removal over magnetic AgI-BiOI/CoFe2O4 photocatalysts using wet process[J]. Journal of Fuel Chemistry and Technology, 2018, 46(3): 365-374.

Effects of experimental parameters on Hg0 removal over magnetic AgI-BiOI/CoFe2O4 photocatalysts using wet process

Funds:

The project was supported by the National Natural Science Foundation of China 51676064

The project was supported by the National Natural Science Foundation of China 51306046

The project was supported by the National Natural Science Foundation of China U1404520

the Young Core Instructor Project in the Higher Education Institutions of Henan Province 2016GGJS-038

the Fundamental Research Funds for the Universities of Henan Province NSFRF140204

the Outstanding Youth Science Foundation of Henan Polytechnic University J2016-1

More Information
  • Corresponding author: ZHANG Li-xiang, Tel: 15039126550, E-mail:anchaozhang@126.com
  • Received Date: 2017-09-15
  • Rev Recd Date: 2018-02-03
  • Available Online: 2021-01-23
  • Publish Date: 2018-03-10
  • A novel magnetic AgI-BiOI/CoFe2O4 hybrid composites were prepared via a solvothermal and subsequent coprecipitation method, and utilized to remove Hg0 from coal-fired flue gas under fluorescent light irradiation. The experimental parameters and main products presented in solution after reaction were investigated in detail. The experimental results showed that the AgI-BiOI/CoFe2O4 composites showing a poor thermal stability would transform into other compounds when the calcinated temperature was above 400℃. With the increases of photocatalyst dosage, reaction solution pH, temperature of reaction solution in reactor and O2 concentration, the Hg0 removal efficiencies were first increased and then unchanged or decreased. The presences of inorganic anions such as CO32- and SO42- in solution exhibited some inhibitory effects on Hg0 removal. Furthermore, the presence of SO2 had a dramatic inhibition on Hg0 removal, while the inhibitory effect of NO on Hg0 removal was relatively small. SO42-, NO3- and Hg2+ species were the final oxidation products of SO2, NO and Hg0 by reactive species.
  • loading
  • [1]
    YANG S J, GUO Y F, YAN N Q, WU D Q, HE H P, XIE J K, QU Z, JIA J P. Remarkable effect of the incorporation of titanium on the catalytic activity and SO2 poisoning resistance of magnetic Mn-Fe spinel for elemental mercury capture[J]. Appl Catal B:Environ, 2011, 10(3/4):698-708. http://www.irgrid.ac.cn/handle/1471x/460393
    [2]
    ZHOU Q, DUAN Y F, HONG Y G, ZHU C, SHE M, ZHANG J, WEI H Q. Experimental and kinetic studies of gas-phase mercury adsorption by raw and bromine modified activated carbon[J]. Fuel Process Technol, 2015, 134:325-332. doi: 10.1016/j.fuproc.2014.12.052
    [3]
    YOU C F, XU X C. Coal combustion and its pollution control in China[J]. Energy, 2010, 35(11):4467-4472. doi: 10.1016/j.energy.2009.04.019
    [4]
    WU J, LI C E, ZHAO X Y, WU Q, QI X M, CHEN X T, HU T, CAO Y. Photocatalytic oxidation of gas-phase Hg0 by CuO/TiO2[J]. Appl Catal B:Environ, 2015, 176/177:559-569. doi: 10.1016/j.apcatb.2015.04.044
    [5]
    张华伟, 陈江艳, 赵可, 牛庆欣, 王力. Mn/Ce掺杂改性半焦对模拟煤气中单质汞的脱除性能研究[J].燃料化学学报, 2016, 44(4):394-400. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18805.shtml

    ZHANG Hua-wei, CHEN Jiang-yan, ZHAO Ke, NIU Qing-xin, WANG Li. Removal of vapor-phase elemental mercury from simulated syngas using semi-coke modified by Mn/Ce doping[J]. J Fuel Chem Technol, 2016, 44(4):394-400. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18805.shtml
    [6]
    HAN L N, HE X X, YUE C X, HU Y F, LI L N, CHANG L P, WANG H, WANG J C. Fe doping Pd/AC sorbent efficiently improving the Hg0 removal from the coal-derived fuel gas[J]. Fuel, 2016, 182:64-72. doi: 10.1016/j.fuel.2016.05.046
    [7]
    WANG F M, LI G L, SHEN B X, WANG Y Y, HE C. Mercury removal over the vanadia-titania catalyst in CO2-enriched conditions[J]. Chem Eng J, 2015, 263:356-363. doi: 10.1016/j.cej.2014.10.091
    [8]
    JEON S H, EOM Y J, LEE T G. Photocatalytic oxidation of gas-phase elemental mercury by nanotitanosilicate fibers[J]. Chemosphere, 2008, 71(5):969-974. doi: 10.1016/j.chemosphere.2007.11.050
    [9]
    WU J, LI X, REN J X, QI X M, HE P, NI B, ZHANG C, HU C Z, ZHOU J. Experimental study of TiO2 hollow microspheres removal on elemental mercury in simulated flue gas[J]. J Ind Eng Chem, 2015, 32:49-57. doi: 10.1016/j.jiec.2015.07.019
    [10]
    SNIDER G, ARIYA P. Photo-catalytic oxidation reaction of gaseous mercury over titanium dioxide nanoparticle surfaces[J]. Chem Phys Lett, 2010, 491(1/3):23-28. https://www.sciencedirect.com/science/article/pii/S0009261410004604
    [11]
    SHEN H Z, IE I R, YUAN C S, HUNG C H, CHEN W H, LUO J J, JEN Y H. Enhanced photocatalytic oxidation of gaseous elemental mercury by TiO2 in a high temperature environment[J]. J Hazard Mater, 2015, 289:235-243. doi: 10.1016/j.jhazmat.2015.02.033
    [12]
    袁媛, 张军营, 赵永椿, 王宇翔, 郑楚光. SO2和NO浓度对TiO2-硅酸铝纤维脱除元素汞的影响[J].燃料化学学报, 2012, 40(5):630-635. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract17955.shtml

    YUAN Yuan, ZHANG Jun-ying, ZHAO Yong-chun, WANG Yu-xiang, ZHENG Chu-guang. Effects of SO2 and NO on removal of elemental mercury using a TiO2-aluminum silicate fiber[J]. J Fuel Chem Technol, 2012, 40(5):630-635. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract17955.shtml
    [13]
    LI Y, WU C Y. Kinetic study for photocatalytic oxidation of elemental mercury on a SiO2-TiO2 nanocomposite[J]. Environ Eng Sci, 2007, 24(1):3-12. doi: 10.1089/ees.2007.24.3
    [14]
    YUAN Y, ZHANG J Y, LI H L, LI Y, ZHAO Y C, ZHENG C G. Simultaneous removal of SO2, NO and mercury using TiO2-aluminum silicate fiber by photocatalysis[J]. Chem Eng J, 2012, 192(2):21-28. http://www.doc88.com/p-9843440989534.html
    [15]
    QI X M, GU M L, ZHU X Y, WU J, LONG H M, HE K, WU Q. Fabrication of BiOIO3 nanosheets with remarkable photocatalytic oxidation removal for gaseous elemental mercury[J]. Chem Eng J, 2016, 285:11-19. doi: 10.1016/j.cej.2015.09.055
    [16]
    DONG G H, HO W K, ZHANG L Z. Photocatalytic NO removal on BiOI surface:The change from nonselective oxidation to selective oxidation[J]. Appl Catal B:Environ, 2015, 168/169:490-496. https://www.sciencedirect.com/science/article/pii/S0926337315000193
    [17]
    OU M, ZHONG Q, ZHANG S L, NIE H Y, LV Z J, CAI W. Graphene-decorated 3D BiVO4 superstructure:Highly reactive (040) facets formation and enhanced visible-light-induced photocatalytic oxidation of NO in gas phase[J]. Appl Catal B:Environ, 2016, 193:160-169. doi: 10.1016/j.apcatb.2016.04.029
    [18]
    ZHANG A C, XING W B, ZHANG D, WANG H, CHEN G Y, XIANG J. A novel low-cost method for Hg0removal from flue gas by visible-light-driven BiOX (X=Cl, Br, I) photocatalysts[J]. Catal Commun, 2016, 87:57-61. doi: 10.1016/j.catcom.2016.09.003
    [19]
    ZHANG A C, ZHANG L X, CHEN X Z, ZHU Q F, LIU Z C, XIANG J. Photocatalytic oxidation removal of Hg0 using ternary Ag/AgI-Ag2CO3 hybrids in wet scrubbing process under fluorescent light[J]. Appl Surf Sci, 2017, 392:1107-1116. doi: 10.1016/j.apsusc.2016.09.116
    [20]
    ZHANG L X, ZHANG A C, LU H, SUN Z J, SHENG W, SUN L S, XIANG J. Magnetically separable AgI-BiOI/CoFe2O4 hybrid composites for Hg0 removal:Characterization, activity and mechanism[J]. RSC Adv, 2017, 7(50):31448-31456. doi: 10.1039/C7RA04175F
    [21]
    CHENG H F, HUANG B B, DAI Y, QIN X Y, ZHANG X Y. One-Step synthesis of the nanostructured AgI/BiOI composites with highly enhanced visible-light photocatalytic performances[J]. Langmuir, 2010, 26(9):6618-6624. doi: 10.1021/la903943s
    [22]
    YU C L, FAN C F, YU J C, ZHOU W Q, YANG K. Preparation of bismuth oxyiodides and oxides and their photooxidation characteristic under visible/UV light irradiation[J]. Mater Res Bull, 2011, 46(1):140-146. doi: 10.1016/j.materresbull.2010.08.013
    [23]
    CAO J, LI X, LIN H L, XU B Y, LUO B D, CHEN S F. Low temperature synthesis of novel rodlike Bi5O7I with visible light photocatalytic performance[J]. Mater Lett, 2012, 76(6):181-183. https://www.sciencedirect.com/science/article/pii/S0925838817304371
    [24]
    RAUF M A, MARZOUKI N, KORBAHTI B K. Photolytic decolorization of Rose Bengal by UV/H2O2 and data optimization using response surface method[J]. J Hazard Mater, 2008, 159(2/3):602-609. doi: 10.1021/jp909855p
    [25]
    SANTIAGO D E, ARANA J, GONZÁLEZ-D O, ALEMÁN-D M E, ACOSTA-D A C, FERNANDEZ-R C, PÉREZ-P J, DONA-R J M. Effect of inorganic ions on the photocatalytic treatment of agro-industrial wastewaters containing imazalil[J]. Appl Catal B:Environ, 2014, 156/157(3):284-292. https://www.sciencedirect.com/science/article/pii/S0926337314001775
    [26]
    CHEN J, HU Z, WANG D, GAO C, JI R. Photocatalytic mineralization of dimethoate in aqueous solutions using TiO2:Parameters and by-products analysis[J]. Desalination, 2010, 258(1):28-33. https://www.sciencedirect.com/science/article/pii/S0011916410002092
    [27]
    ZHAO Y, HAO R L. Macrokinetics of Hg0 removal by a vaporized multicomponent oxidant[J]. Ind Eng Chem Res, 2014, 53(27):10899-10905. doi: 10.1021/ie5009376
    [28]
    XIA D H, HU L L, HE C, PAN W Q, YANG T S, YANG Y C, SHU D. Simultaneous photocatalytic elimination of gaseous NO and SO2 in a BiOI/Al2O3-padded trickling scrubber under visible light[J]. Chem Eng J, 2015, 279:929-938. doi: 10.1016/j.cej.2015.05.097
    [29]
    KIM J, LEE C W, CHOI W. Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light[J]. Environ Sci Technol, 2010, 44(17):6849-6854. doi: 10.1021/es101981r
    [30]
    LIU Y X, ZHANG J, SHENG C D, ZHANG Y C, ZHAO L. Simultaneous removal of NO and SO2 from coal-fired flue gas by UV/H2O2 advanced oxidation process[J]. Chem Eng J, 2010, 162(3):1006-1011. doi: 10.1016/j.cej.2010.07.009
    [31]
    LASEK J, YU Y H, WU J C S. Removal of NOx by photocatalytic processes[J]. J Photochem Photobiol C, 2013, 14(1):29-52. doi: 10.1021/jp912201h?src=recsys
    [32]
    MCLARNON C R, GRANITE E J, PENNLINE H W. The PCO Process for photochemical removal of mercury from flue gas[J]. Fuel Process Technol, 2005, 87(1):85-89. doi: 10.1016/j.fuproc.2005.07.001
    [33]
    LIU Y X, ZHANG J, SHENG C D, ZHANG Y C, ZHAO L. Preliminary study on a new technique for wet removal of nitric oxide from simulated flue gas with an ultraviolet (UV)/H2O2 process[J]. Energy Fuels, 2010, 24(9):4925-4930. doi: 10.1021/ef1006325
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (76) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return