Volume 47 Issue 9
Sep.  2019
Turn off MathJax
Article Contents
LI Zuo-peng, SHANG Jian-peng, FU Wei, YANG Xiao-meng, LIU Wei, ZENG Jian-huang, GUO Yong, FENG Feng. In-situ electrodeposited flower-like NiFeOxHy/rGO on nickel foam for oxygen evolution reaction[J]. Journal of Fuel Chemistry and Technology, 2019, 47(9): 1083-1089.
Citation: LI Zuo-peng, SHANG Jian-peng, FU Wei, YANG Xiao-meng, LIU Wei, ZENG Jian-huang, GUO Yong, FENG Feng. In-situ electrodeposited flower-like NiFeOxHy/rGO on nickel foam for oxygen evolution reaction[J]. Journal of Fuel Chemistry and Technology, 2019, 47(9): 1083-1089.

In-situ electrodeposited flower-like NiFeOxHy/rGO on nickel foam for oxygen evolution reaction

Funds:

the National Natural Science Foundation of China 21073113

Natural Science Foundation of Shanxi 201701D121016

Natural Science Foundation of Datong 201819

More Information
  • Corresponding author: ZENG Jian-huang, Tel & Fax: +86-352-7158185, E-mail: cejhzeng@scut.edu.cn; FENG Feng, E-mail: feng-feng64@263.net
  • Received Date: 2019-05-20
  • Rev Recd Date: 2019-07-22
  • Available Online: 2021-01-23
  • Publish Date: 2019-09-10
  • Developing cost-effective electrocatalysts for oxygen evolution reaction (OER) in basic media is critical to hydrogen production from renewable energy. Herein, in-situ electrodeposited flower-like NiFeOxHy and NiFeOxHy/rGO composite electrocatalysts on Ni foam for OER are reported. The active sites of the flower-like electrocatalysts are increased significantly due to the enhanced NiFeOxHy surface areas and numerous exposed layered edges and edge defects. Reduced graphene oxide (rGO) has been introduced to fabricate NiFeOxHy/rGO composite film, further improving the conductivity and OER performance of the flower-like NiFeOxHy. The optimized NiFeOxHy/rGO exhibits superior OER performance with a Tafel slope of 29.11 mV/decade, an overpotential of 200 mV at 10 mA/cm2 in 1 mol/L KOH and favorable long-term stability.
  • loading
  • [1]
    SHERIF S A, BARBIR F, VEZIROGLU T N. Wind energy and the hydrogen economy-review of the technology[J]. Sol Energy, 2005, 78(5):647-660.
    [2]
    TRONCOSO E, NEWBOROUGH M. Implementation and control of electrolysers to achieve high penetrations of renewable power[J]. Int J Hydrogen Energy, 2007, 32(13):2253-2268. doi: 10.1016/j.ijhydene.2007.02.034
    [3]
    WANG J, CUI W, LIU Q, XING Z, ASIRI A M, SUN X. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting[J]. Adv Mater, 2016, 28:215-230 doi: 10.1002/adma.201502696
    [4]
    DENG X, TVYSUVZ H. Cobalt-oxide-based materials as water oxidation catalyst:Recent progress and challenges[J]. ACS Catal, 2014, 4(10):3701-3714. doi: 10.1021/cs500713d
    [5]
    SUEN N, HUNG S, QUAN Q, ZHANG N, XU Y, CHEN H M. Electrocatalysis for the oxygen evolution reaction:recent development and future perspectives[J]. Chem Soc Rev, 2016, 46:337-365.
    [6]
    LEE D U, XU P, CANO Z P, KASHKOOLI A G, PARK M G, CHEN Z. Recent progress and perspectives on bi-functional oxygen electrocatalysts for advanced rechargeable metal-air batteries[J]. J Mater Chem A, 2016, 4:7107-7134. doi: 10.1039/C6TA00173D
    [7]
    REIER T, OEZASLAN M, STRASSER P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts:A comparative study of nanoparticles and bulk materials[J]. ACS Catal, 2012, 2(8):1765-1772. doi: 10.1021/cs3003098
    [8]
    YOUN D H, PARK Y B, KIM J Y, MAGESH G, JANG Y, LEE J S. One-pot synthesis of NiFe layered double hydroxide/reduced graphene oxide composite as an efficient electrocatalyst for electrochemical and photoelectrochemical water oxidation[J]. J Power Sources, 2015, 294:437-443 doi: 10.1016/j.jpowsour.2015.06.098
    [9]
    CHEN Y, RUI K, ZHU J, DOU S X, SUN W. Recent progress on nickel-based oxide/(oxy)hydroxide electrocatalysts for the oxygen evolution reaction[J]. Chem Eur J, 2019, 25(3):703-713. doi: 10.1002/chem.201802068
    [10]
    GONG M AND DAI H. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts[J]. Nano Res, 2015, 8(1):23-39.
    [11]
    ZHU K, ZHU X. YANG W. Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts[J]. Angew Chem Int Ed, 2019, 58(5):1252-1265. doi: 10.1002/anie.201802923
    [12]
    CHEN J Y, DANG L, LIANG H, BI W, GERKEN J B, JIN S, ALP E E, STAHL S S. Operando analysis of NiFe and Fe oxyhydroxide electrocatalysts for water oxidation:Detection of Fe4+ by mössbauer spectroscopy[J]. J Am Chem Soc, 2015, 137(48):15090-15093. doi: 10.1021/jacs.5b10699
    [13]
    AHN H S, BARD A J. Surface interrogation scanning electrochemical microscopy of Ni1-xFexOOH (0 < x < 0.27) oxygen evolving catalyst:Kinetics of the "fast" iron sites[J]. J Am Chem Soc, 2016, 138(1):313-318. doi: 10.1021/jacs.5b10977
    [14]
    GÖRLIN M, ARAÚJO J F, SCHMIES H, BERNSMEIER D, DRESP S, GLIECH M, JUSYS Z, CHERNEV P, KRAEHNERT R, DAU H, STRASSER P. Tracking catalyst redox states and reaction dynamics in Ni-Fe oxyhydroxide oxygen evolution reaction (OER) electrocatalysts:the role of catalyst support and electrolyte pH[J]. J Am Chem Soc, 2017, 139(5):2070-2082. doi: 10.1021/jacs.6b12250
    [15]
    ZHOU Q, CHEN Y, ZHAO G, LIN Y, YU Z, XU X, WANG X, LIU H, SUN W, DOU S X. Active site-enriched iron-doped nickel/cobalt hydroxide nanosheets for enhanced oxygen evolution reaction[J]. ACS Catal, 2018, 8(6):5382-5390. doi: 10.1021/acscatal.8b01332
    [16]
    YAN K, LAFLEUR T, CHAI J, JARVIS C. Facile synthesis of thin NiFe-layered double hydroxides nanosheets efficient for oxygen evolution[J]. Electrochem Commun, 2015, 62:24-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=708f7cba7285bd4eed016cace95417bc
    [17]
    LU X, ZHAO C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities[J]. Nat Commun, 2015, 6:6616. doi: 10.1038/ncomms7616
    [18]
    MORALES-GUIO C G, LIARDET L, HU X. Oxidatively electrodeposited thin film transition metal (oxy)hydroxides as oxygen evolution catalysts[J]. J Am Chem Soc, 2016, 138(28):8946-8957. doi: 10.1021/jacs.6b05196
    [19]
    TRZESNIEWSKI B J, DIAZ-MORALES O, VERMAAS D A, LONGO A, BRAS W, KOPER M, SMITH W A. In situ observation of active oxygen species in Fe-Containing Ni-based oxygen evolution catalysts:the effect of pH on electrochemical activity[J]. J Am Chem Soc, 2015, 137(48):15112-15121.
    [20]
    FRIEBEL D, LOUIE M W, BAJDICH M, SANWALD K E, CAI Y, WISE A M, CHENG M, SOKARAS D, WENG T, ALONSO-MORI R, DAVIS R C, BARGAR J R, NORSKOV J K, NILSSON A, BELL A T. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting[J]. J Am Chem Soc, 2015, 137(3):1305-1313. doi: 10.1021/ja511559d
    [21]
    SHAO Y, WANG J, ENGELHARD M, WANG C, LIN Y. Facile and controllable electrochemical reduction of graphene oxide and its applications[J]. J Mater Chem, 2010, 20:743-748. doi: 10.1039/B917975E
    [22]
    GUO H, WANG X, QIAN Q, WANG F, XIA X. A green approach to the synthesis of graphene nanosheets[J]. ACS Nano, 2009, 3(9):2653-2659. doi: 10.1021/nn900227d
    [23]
    HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. J Am Chem Soc, 1958, 80(6):1339-1339. doi: 10.1021/ja01539a017
    [24]
    RONG F, ZHAO J, YANG Q, LI C. Nanostructured hybrid NiFeOOH/CNT electrocatalysts for oxygen evolution reaction with low overpotential[J]. RSC Adv, 2016, 6:74536-74544 doi: 10.1039/C6RA16450A
    [25]
    LIU R, WANG Y, LIU D, ZOU Y, WANG S. Water-plasma-enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation[J]. Adv Mater, 2017, 29:1701546. doi: 10.1002/adma.201701546
    [26]
    ZHANG Y, LU J. A mild and efficient biomimetic synthesis of rodlike hydroxyapatite particles with a high aspect ratio using polyvinylpyrrolidone as capping agent[J]. Cryst Growth Des, 2008, 8(7):2101-2107. doi: 10.1021/cg060880e
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (88) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return