Volume 47 Issue 10
Oct.  2019
Turn off MathJax
Article Contents
TAN Guan-xi, CHI Yao-ling, LI Shuang, YI Yu-feng, JIN Guang-zhou. Performance of manganese-zirconium composite oxide in the catalytic reduction of NO by CO[J]. Journal of Fuel Chemistry and Technology, 2019, 47(10): 1258-1264.
Citation: TAN Guan-xi, CHI Yao-ling, LI Shuang, YI Yu-feng, JIN Guang-zhou. Performance of manganese-zirconium composite oxide in the catalytic reduction of NO by CO[J]. Journal of Fuel Chemistry and Technology, 2019, 47(10): 1258-1264.

Performance of manganese-zirconium composite oxide in the catalytic reduction of NO by CO

Funds:

the National Basic Research Program of China 973 program, 2012CB215002

More Information
  • Corresponding author: JIN Guang-zhou, E-mail: jinguangzhou@bipt.edu.cn
  • Received Date: 2019-06-28
  • Rev Recd Date: 2019-07-15
  • Available Online: 2021-01-23
  • Publish Date: 2019-10-10
  • A series of manganese-zirconium composite oxides were prepared by citric acid complexing method and characterized by XRD, H2-TPR, XPS and SEM; their performance in the catalytic reduction of NO by CO was investigated. The results show that Mn3O4 is the main phase for MnOx in the Mn-Zr composite oxide; an increase in the Zr content can promote the dispersion of Mn3O4 and reduce the average grain size of Mn3O4. Mn may exist in the form of Mn2+, Mn3+ and Mn4+ ions; the content of (Mn3+ + Mn4+) and the quantity of surface adsorbed oxygen (OA) increase after the addition of Cu and Ce, which is beneficial to enhancing the catalytic activity. The pristine Mn-Zr-O composite shows a relatively low activity in the catalytic reduction of NO by CO; after adding Cu, the Mn-Cu-Zr-O composite exhibits much higher activity than Mn-Zr-O; moreover, the activity of Mn-Cu-Ce-Zr-O composite is even enhanced by adding Ce. For the catalytic reduction of NO by CO over the Mn-Cu-Ce-Zr-O composite at 350℃ and with a space velocity of 18000 h-1, the CO conversion and NO conversion are 89.17% and 91.70%, respectively.
  • loading
  • [1]
    TRINH H T, IMANISHI K, MORIKAWAI T, HAGINO H, TAKENAKA N. Gaseous nitrous acid (HONO) and nitrogen oxides (NOx) emission from gasoline and diesel vehicles under real-world driving test cycles[J]. Air Repair, 2017, 67(4): 412-420.
    [2]
    DIAO B D, DING L, SU P D, CHENG J H. The spatial-temporal characteristics and influential factors of NOx emissions in China: A spatial econometric analysis[J]. Int J Environ Res Public Health, 2018, 15(7): 1405. doi: 10.3390/ijerph15071405
    [3]
    GE X Y, ZHOU Z M, ZHOU Y L, YE X Y, LIU S L. A spatial panel data analysis of economic growth, urbanization, and NOx emissions in China[J]. Int J Environ Res Public Health, 2018, 15(4): 725. doi: 10.3390/ijerph15040725
    [4]
    TIBOR B, MILAN V, HRVOJE M, NEVEN D. Numerical modelling of emissions of nitrogen oxides in solid fuel combustion[J]. J Environ Manage, 2018, 215: 177-184. doi: 10.1016/j.jenvman.2018.03.014
    [5]
    LI J H, PENG Y, CHANG H Z, LI X, RITTENDEN J C, HAO J M. Chemical poison and regeneration of SCR catalysts for NOx removal from stationary sources[J]. Front Environ Sci Eng, 2016, 10(3): 413-427. doi: 10.1007/s11783-016-0832-3
    [6]
    LIU K, YAO Y Y, WEI L Q, SHI Z F. Preparation and evaluation of Cu-Mn-oxide as high efficiency catalyst for CO oxidation and NO reduction by CO[J]. J Phys Chem C, 2017, 123(23): 12757-12770. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0c85386cb7ae05a7115af1236431c950
    [7]
    LI K W, CHEN L H, WHITE S J, HAN K, LV B, BAO K J, WU X C, GAO X, AZZI M, CEN K F. Effect of nitrogen oxides (NO and NO2) and toluene on SO2, photooxidation, nucleation and growth: A smog chamber study[J]. Atmos Res, 2017, 192: 38-47. doi: 10.1016/j.atmosres.2017.03.017
    [8]
    LU P, LI H, LIU H Y, CHEN Y F. Influence of tungsten on the NH3-SCR activity of Mn WOx/TiO2 catalysts[J]. Rsc Adv, 2017, 7(32): 19771-19779. doi: 10.1039/C7RA00427C
    [9]
    JIANG Y, XING Z M, WANG X C, HUANG S B, WANG X W, LIU Q Y. MoO3 modified CeO2/TiO2 catalyst prepared by a single step sol-gel method for selective catalytic reduction of NO with NH3[J]. J Ind Eng Chem, 2015, 29(1): 43-47. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=deb3b6ae8c0c2fcd192b47bb401604cc
    [10]
    MA L, SEO C Y, NAHATA M, CHEN X Y, LI J H, SCHWANK J W. Shape dependence and sulfate promotion of CeO2 for selective catalytic reduction of NOx with NH3[J]. Appl Catal B: Environ, 2018, 232(1): 246-259. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=07323cbbb93c6a0dd7cccc469be58026
    [11]
    XU L W, WANG C Z, CHANG H Z, WU Q R. New insight into SO2 poisoning and regeneration of CeO2-WO3/TiO2 and V2O5-WO3/TiO2 catalysts for low-temperature NH3-SCR[J]. Environ Sci Technol, 2018, 52(12): 7064-7071. doi: 10.1021/acs.est.8b01990
    [12]
    CHEN L, LI J H, GE M F. The poisoning effect of alkali metals doping over nano V2O5-WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3[J]. Chem Eng J, 2011, 170(2/3): 531-537. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=399fd63147e1906cfaa41d3df0ae8a45
    [13]
    WANG H, QU Z P, DONG S C, TANG C. Mechanistic investigation into the effect of sulfuration on the FeW catalysts for the selective catalytic reduction of NOx with NH3[J]. ACS Appl Mater Inter, 2017, 9(8): 7017-7028. doi: 10.1021/acsami.6b14031
    [14]
    PI Z P, SHEN B X, LIU J C, LIU Y F, ZHAO J G. Reduction of NOx in fluid catalytic cracking flue gas over Mg-Al spinel modified with transition metal oxides[J]. Pet Sci Technol, 2016, 34(24): 1958-1963. doi: 10.1080/10916466.2016.1236275
    [15]
    JIANG R Y, SHAN H H, ZHANG J L, YANG C H, LI C Y. Synthesis, Characterization and evaluation of sulfur transfer catalysts for FCC flue gas[J]. China Pet Process Petrochem Technol, 2014, 16(2): 59-64.
    [16]
    KONG L P, MIAO J, LI M H, TAN G X, JIN G Z. CuMnCeLa-O/γ-Al2O3 catalytic combustion denitration performance research[J]. J Mol Catal, 2018, 32(4): 295-304.
    [17]
    MU J C, LI X Y, SUN W B, FAN S Y. Enhancement of low-temperature catalytic activity over highly dispersed Fe-Mn/Ti catalyst for selective catalytic reduction of NOx with NH3[J]. Ind Eng Chem Res, 2018, 57(31): 10159-10169. doi: 10.1021/acs.iecr.8b01335
    [18]
    XU H D, ZHANG Q L, QIU C T, LIN T, GONG M C, CHEN Y Q. Tungsten modified MnOx-CeO2/ZrO2 monolith catalysts for selective catalytic reduction of NOx with ammonia[J]. Chem Eng Sci, 2012, 76: 120-128. doi: 10.1016/j.ces.2012.04.012
    [19]
    TIAN G L, CUI S P, WANG Y L, WANG J F. Different precipitant preparation of nickel-doped Mn/TiO2 catalysts for low-temperature SCR of NO with NH3[J]. Mater Sci Forum, 2018, 913(1): 976-984.
    [20]
    ZHAO H J, FANG K G, DONG F, LIN M G, SUN Y H, TANG Z C. Textual properties of Cu-Mn mixed oxides and application for methyl formate synthesis from syngas[J]. Ind Eng Chem, 2017, 54(1): 117. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d3c8ee27a10a61f86ccb7eb24d6b1bc7
    [21]
    HE R X, WANG D D, ZHI K D, WANG B, ZHOU H C, JIANG H Q, LI N, LIU Q S. Cu-Mn catalysts modified by rare earth lanthanum for low temperature water-gas shift reaction[J]. J Rare Earth, 2016, 34(10): 994-1003. doi: 10.1016/S1002-0721(16)60126-6
    [22]
    QI G, YANG R T. Characterization and FTIR studies of MnOx-CeO2 catalyst for low-temperature selective catalytic reduction of NO with NH3[J]. J Phys Chem B, 2004, 108(40): 15738-15747. doi: 10.1021/jp048431h
    [23]
    KANG M, PARK E D, KIM J M, YIE J E. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures[J]. Appl Catal A: Gen, 2007, 327(2): 261-269. doi: 10.1016/j.apcata.2007.05.024
    [24]
    XIA F T, SONG Z X, LIU X, LIU X, YANG Y H, ZHANG Q L, PENG J H. Improved catalytic activity and N2 selectivity of Fe-Mn-Ox catalyst for selective catalytic reduction of NO by NH3 at low temperature[J]. Res Chem Intermed, 2018, 44(1): 1-15.
    [25]
    LU H F, KONG X X, HUANG H F, ZHOU Y, CHEN Y F. Cu-Mn-Ce ternary mixed-oxide catalysts for catalytic combustion of toluene[J]. J Environ Sci, 2015, 32(6): 102-107. http://d.old.wanfangdata.com.cn/Periodical/jes-e201506012
    [26]
    ZHANG L, CHEN T J, ZENG S H, SU H Q. Effect of doping elements on oxygen vacancies and lattice oxygen in CeO2-CuO catalysts[J]. J Environ Chem Eng, 2016, 4(3): 2785-2794. doi: 10.1016/j.jece.2016.05.023
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (114) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return