Volume 46 Issue 10
Oct.  2018
Turn off MathJax
Article Contents
HONG Xin, LI Yun-he, GAO Chang, FAN Bo, PANG Yu-ying, ZHANG Dan, TANG Ke. Synthesis of ZSM-5 zeolites with different silica/alumina ratios and their performance in the removal of aniline and pyridine from model fuel through adsorption[J]. Journal of Fuel Chemistry and Technology, 2018, 46(10): 1184-1192.
Citation: HONG Xin, LI Yun-he, GAO Chang, FAN Bo, PANG Yu-ying, ZHANG Dan, TANG Ke. Synthesis of ZSM-5 zeolites with different silica/alumina ratios and their performance in the removal of aniline and pyridine from model fuel through adsorption[J]. Journal of Fuel Chemistry and Technology, 2018, 46(10): 1184-1192.

Synthesis of ZSM-5 zeolites with different silica/alumina ratios and their performance in the removal of aniline and pyridine from model fuel through adsorption

Funds:

the Liaoning Provincial Natural Science Foundation of China 20180550639

More Information
  • Corresponding author: TANG Ke, E-mail:tangke0001@163.com
  • Received Date: 2018-05-30
  • Rev Recd Date: 2018-08-14
  • Available Online: 2021-01-23
  • Publish Date: 2018-10-10
  • A series of ZSM-5 zeolites with different silica/alumina ratios were synthesized and characterized by means of XRD, FT-IR, ICP, SEM, NH3-TPD and N2 sorption; their performance in the removal of aniline and pyridine from a model fuel through adsorption was then investigated. The results indicated that all the as-synthesized ZSM-5 zeolites have the MFI structure, although the actual silica/alumina ratio in the as-synthesized ZSM-5 zeolites is somewhat lower than that in the corresponding synthesis mixture. As expected, the acid amount of ZSM-5 zeolites decreases with the increase of the silica/alumina ratio. The adsorption denitrogenation performance of ZSM-5(1) and ZSM-5(2) with relatively lower silica/alumina ratios is superior to that of other two zeolite samples; meanwhile, the removal efficiency for pyridine over all ZSM-5 samples is higher than that for aniline. Moreover, adsorption isotherms of aniline and pyridine over ZSM-5(2) accord with the Langmuir-Freundlich adsorption model.
  • loading
  • [1]
    LAREDO G C, LEYVA S, ALVAREZ R, TERESA MARES M, CASTILLO J, LUIS CANO J. Nitrogen compounds characterization in atmospheric gas oil and light cycle oil from a blend of Mexican crudes[J]. Fuel, 2002, 81(10):1341-1350. doi: 10.1016/S0016-2361(02)00047-9
    [2]
    CHENG X, ZHAO T, FU X, HU Z. Identification of nitrogen compounds in RFCC diesel oil by mass spectrometry[J]. Fuel Process Technol, 2004, 85(13):1463-1472. doi: 10.1016/j.fuproc.2003.10.004
    [3]
    GARCÍA-GUTIÉRREZ J L, LAREDO G C, FUENTES G A, GARCÍA-GUTIÉRREZ P, JIMÉNEZ-CRUZ F. Effect of nitrogen compounds in the hydrodesulfurization of straight-run gas oil using a CoMoP/g-Al2O3 catalyst[J]. Fuel, 2014, 138:98-103. doi: 10.1016/j.fuel.2014.08.008
    [4]
    POLO P. The suppression of a basic nitrogen compound influence on hydrodesulfurization activity of dibenzothiophene in treated diesel over Al2O3 supported CoMo catalysits by ZrO2 as a secondary support[J]. Catal Commun, 2015, 62(5):89-94. https://www.sciencedirect.com/science/article/pii/S1566736715000217
    [5]
    PRADO G H C, YUAN R, KLERK A D. Nitrogen removal from oil:A review[J]. Energy Fuels, 2017, 31:14-36. doi: 10.1021/acs.energyfuels.6b02779
    [6]
    刘伟, 焦化柴油氧化脱氮工艺研究[D].北京: 中国石油大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10425-1011287221.htm

    LIU Wei. Process of oxidative denitrification of coking diesel[D]. Beijing: China University of Petroleum, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10425-1011287221.htm
    [7]
    王云芳, 刘伟, 袁倩, 李青松.焦化柴油氧化萃取脱氮技术研究[J].应用化工, 2011, 40(8):1430-1436. doi: 10.3969/j.issn.1671-3206.2011.08.037

    WANG Yun-fang, LIU Wei, YUAN Qian, LI Qing-song. Technology of oxidative denitrification combined with extraction for coking diesel[J]. Appl Chem Ind, 2011, 40(8):1430-1436. doi: 10.3969/j.issn.1671-3206.2011.08.037
    [8]
    SCHMITT C C, CHIARO S S X, TAKESHITA E V, YAMAMOTO C I. Regeneration of activated carbon from babassu coconut refuse applied as a complementary treatment to conventional refinery hydrotreatment of diesel fuel[J]. J Clean Prod, 2016, 140:1465-1469. https://www.sciencedirect.com/science/article/pii/S0959652616315876
    [9]
    WEN J, LIN H, HAN X, ZHENG Y, CHU W. Physicochemical studies of adsorptive denitrogenation by oxidized activated carbons[J]. Ind Eng Chem Res, 2017, 56(17):5033-5041. doi: 10.1021/acs.iecr.6b05015
    [10]
    TAN P, XIE X Y, LIU X Q, PAN T, GU C, CHEN P F, ZHOU J Y, PAN Y C, SUN L B. Fabrication of magnetically responsive HKUST-1/Fe3O4 composites by dry gel conversion for deep desulfurization and denitrogenation[J]. J Hazard Mater, 2017, 321:344-352. doi: 10.1016/j.jhazmat.2016.09.026
    [11]
    LAREDO G C, VEGA-MERINO P M, MONTOYA-DE FUENTE J A, MORA-VALLEJO R J, MENESES-RUIZ E, CASTILLO J J, ZAPATO-RENDÓN B. Comparison of the metal-organic framework MIL 101(Cr) versus four commercial adsorbents for nitrogen compounds removal in diesel feedstocks[J]. Fuel, 2016, 180:284-291. doi: 10.1016/j.fuel.2016.04.038
    [12]
    MAMBRINI R V, SALDANHA A L M, ARDISSON J D, ARAUJO M H, MOURA F C C. Adsorption of sulfur and nitrogen compounds on hydrophobic bentonite[J]. Appl Clay Sci, 2013, 84(10):286-293. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0231779223
    [13]
    BAIA L V, SOUZAA W C, DE SOUZA R J F, VELOSO C D O, CHIARO S S X, FIGUEIREDO C M A G. Removal of sulfur and nitrogen compounds from diesel oil by adsorption using clays as adsorbents[J]. Energy Fuels, 2017, 31(11):11731-11742. doi: 10.1021/acs.energyfuels.7b01928
    [14]
    MUSHRUSH G W, QUINTANA M A, BAUSERMAN J W, WILLAUER H D. Post-refining removal of organic nitrogen compounds from diesel fuels to improve environmental quality[J]. J Environ Sci Health A, 2011, 46(2):176-180. doi: 10.1080/10934529.2011.532433
    [15]
    李红跃, 王雷, 张曼, 赵德智, 刘宝玉, 王立新.新型改性硅胶对碱氮的吸附行为[J].应用化工, 2016, 45(6):1027-1029. http://d.old.wanfangdata.com.cn/Periodical/sxhg201606007

    LI Hong-yue, WANG Lei, ZHANG Man, ZHAO De-zhi, LIU Bao-yu, WANG Li-xin. Adsorption behavior of new modified silica gel for nitrogen base[J]. Appl Chem Ind, 2016, 45(6):1027-1029. http://d.old.wanfangdata.com.cn/Periodical/sxhg201606007
    [16]
    洪新, 李云赫, 袁加成, 赵永华, 唐克.变色硅胶吸附脱除模拟柴油中各种碱性氮化物[J].燃料化学学报, 2018, 46(3):298-304. doi: 10.3969/j.issn.0253-2409.2018.03.006

    HONG Xin, LI Yun-he, YUAN Jia-cheng, ZHAO Yong-hua, TANG Ke. Various basic nitrogen compounds removal from model diesel by adsorption with allochroic silica gel[J]. J Fuel Chem Technol, 2018, 46(3):298-304. doi: 10.3969/j.issn.0253-2409.2018.03.006
    [17]
    KIM J H, MA X, ZHOU A, SONG C. Ultra-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents:a study on adsorptive selectivity and mechanism[J]. Catal Today, 2006, 111(1):74-83. doi: 10.1016-j.cattod.2005.10.017/
    [18]
    ALMARRI M, MA X, SONG C. Selective adsorption for removal of nitrogen compounds from liquid hydrocarbon streams over carbon and alumina-based adsorbents[J]. Ind Eng Chem Res, 2009, 48(48):951-960. http://cn.bing.com/academic/profile?id=606ebc523e45a87345cdd2fbd87eaf46&encoded=0&v=paper_preview&mkt=zh-cn
    [19]
    XIE L L, FAVRE-REGUILLON A, WANG X X, FU X, LEMAIRE M. Selective adsorption of neutral nitrogen compounds from fuel using ion-exchange resins[J]. J Chem Eng Data, 2010, 55(11):4849-4853. doi: 10.1021/je100446p
    [20]
    CHITANDA J M, MISRA P, ABEDI A, DALAI A K, ADJAYE J D. Synthesis and characterization of functionalized poly(glycidyl methacrylate)-based particles for the selective removal of nitrogen compounds from light gas oil:Effect of linker length[J]. Energy Fuels, 2015, 29(3):1881-1891. doi: 10.1021/ef502210z
    [21]
    MISRA P, CHITANDA J M, DALAI A J, ADJAYE J D. Selective removal of nitrogen compounds from gas oil using functionalized polymeric adsorbents:Efficient approach towards improving denitrogenation of petroleum feedstock[J]. Chem Eng J, 2016, 295:109-118. doi: 10.1016/j.cej.2016.03.024
    [22]
    徐如人, 庞文琴, 霍启升.分子筛与多孔材料化学[M].第二版, 北京:科学出版社, 2015.

    XU Ru-ren, PANG Wen-qin, HUO Qi-sheng. Chemistry-Zeolites and Porous Materials[M]. Second edition. Beijing:Science Press, 2015.
    [23]
    徐晓宇, 孙悦, 沈健, 翟玉龙. HY和USY分子筛对模拟油品中碱性氮化物的吸附行为[J].化工进展, 2014, 33(4):1035-1040. http://d.old.wanfangdata.com.cn/Periodical/hgjz201404042

    XU Xiao-yu, SUN Yue, SHEN Jian, ZHAI Yu-long. Adsorption behavior of basic nitrides in model oil on HY and USY molecular sieves[J]. Chem Ind Eng Prog, 2014, 33(4):1035-1040. http://d.old.wanfangdata.com.cn/Periodical/hgjz201404042
    [24]
    洪新, 唐克. NaY分子筛的改性及吸附脱氮性能[J].燃料化学学报, 2015, 43(2):214-220. doi: 10.3969/j.issn.0253-2409.2015.02.012

    HONG Xin, TANG Ke. Modification and adsorptive denitrification of NaY molecular sieve[J]. J Fuel Chem Technol, 2015, 43(2):214-220. doi: 10.3969/j.issn.0253-2409.2015.02.012
    [25]
    SONG H, YOU J A, LI B, CHEN C, HUANG J, ZHANG J. Synthsis, characterization and adsorptive denitrogenation performance of bimodal mesoporous Ti-HMS/KIL-2 composite:A comparative study on synthetic methodology[J]. Chem Eng J, 2017, 327:406-417. doi: 10.1016/j.cej.2017.06.055
    [26]
    SHAHRIAR S A, LIN H, ZHENG Y. Adsorptive denitrogenation and desulfurization of diesel fractions by mesoporous SBA15-supported nickel(Ⅱ) phosphide synthesized through a novel approach of urea matrix combustion[J]. Ind Eng Chem Res, 2012, 51(44):14503-14510. doi: 10.1021/ie3015044
    [27]
    洪新, 李云赫, 赵永华, 唐克.介孔材料Co-MCM-41的合成及其吸附脱除各种碱性氮化物[J].燃料化学学报, 2018, 46(2):243-250. doi: 10.3969/j.issn.0253-2409.2018.02.015

    HONG Xin, LI Yun-he, ZHAO Yong-hua, TANG Ke. Preparation of mesoporous Co-MCM-41 and its performance in adsorption removal of various basic nitrogen compounds[J]. J Fuel Chem Technol, 2018, 46(2):243-250. doi: 10.3969/j.issn.0253-2409.2018.02.015
    [28]
    TANG K, HONG X. Preparation and characterization of Co-MCM-41 and its adsorption removing basic nitrogen compounds from FCC diesel oil[J]. Energy Fuels, 2016, 30(6):4619-4624. doi: 10.1021/acs.energyfuels.6b00427
    [29]
    XUE T, WANG Y M, HE M Y. Synthsis of ultra-high-silica ZSM-5 zeolites with tunable crystal sizes[J]. Solid State Sci, 2012, 14(4):409-418. doi: 10.1016/j.solidstatesciences.2012.01.023
    [30]
    李兆飞, 郭成玉, 王骞, 刘其武, 邢昕, 胡云峰.不同硅铝比ZSM-5分子筛的合成及其在丁烯催化裂解中的应用[J].石油化工, 2016, 45(2):163-168. doi: 10.3969/j.issn.1000-8144.2016.02.007

    LI Zhao-fei, GUO Cheng-yu, WANG Qian, LIU Qi-wu, XING Xin, HU Yun-feng. Synthesis of ZSM-5 zeolites with different silica-aluminaratio and their application in catalytic cracking of 1-butene[J]. Petrochem Technol, 2016, 45(2):163-168. doi: 10.3969/j.issn.1000-8144.2016.02.007
    [31]
    LI J, LIU S Y, ZHANG H, LÜ E J, REN P J, REN J. Synthesis and characterization of an unusual snowflake-shaped ZSM-5 zeolite with high catalytic performance in the methanol to olefin reaction[J]. Chin J Catal, 2016, 37(2):308-305. doi: 10.1016/S1872-2067(15)60979-2
    [32]
    ZHANG S G, HIGASHINMOTO S, YAMASHITA H, ANPO M. Characterization of vanadium oxide/ZSM-5 zeolite catalysts prepared by the solid-state reaction and their photocatalytic reactivity:In situ photoluminescence, XAFS, ESR, FT-IR, and UV vis investigations[J]. J Phys Chem B, 1998, 102(29):5590-5594. doi: 10.1021/jp981230r
    [33]
    WIESSCHE C I D, MARTENS R, ZADRAZIL F. XAFS, IR and UV-vis study of the Cu-I environment in Cu-I-ZSM-5[J]. J Phys Chem B, 2014, 101(3):870-894. https://www.researchgate.net/publication/231656696_XAFS_IR_and_UV-vis_study_of_the_Cu-I_environment_in_Cu-I-ZSM-5
    [34]
    罗晓鸣, 王晓春, 张晓光, 许叔平, 陈旭.不同硅铝比ZSM-5分子筛性能的比较[J].石油学报(石油加工), 1986, 2(4):49-56. http://cdmd.cnki.com.cn/Article/CDMD-10270-1012454433.htm

    LUO Xiao-ming, WANG Xiao-chun, ZHANG Xiao-guang, XU Shu-ping, CHEN Xu. Comparison of the properties of ZSM-5 zeolites of different SiO/Al2O3 ratio[J]. Acta Pet Sin (Pet Process Sect), 1986, 2(4):49-56. http://cdmd.cnki.com.cn/Article/CDMD-10270-1012454433.htm
    [35]
    姜玄珍, 郑雷.用原位红外光谱研究低硅铝比ZSM-5沸石中的新型B酸[J].分子催化, 1996, 10(3):183-186. http://www.cnki.com.cn/Article/CJFDTotal-FZCH603.004.htm

    JIANG Xuan-zhen, ZHENG Lei. Study on a novel typr of brönsted acid sites in ZSM-5 zeolite with low silicon-aluminum ratio by in-situ FT-IR technique[J]. J Mol Catal (China), 1996, 10(3):183-186. http://www.cnki.com.cn/Article/CJFDTotal-FZCH603.004.htm
    [36]
    卢仁杰, 张新艳, 郝郑平.不同硅铝比Fe-ZSM-5催化剂对氧化亚氮催化分解性能的研究[J].环境科学, 2014, 35(1):371-379. http://d.old.wanfangdata.com.cn/Periodical/hjkx201401053

    LU Ren-jie, ZHANG Xin-yan, HAO Zheng-ping. Fe-ZSM-5 catalysts with different silica-alumina ratio for N2O catalytic decomposition[J]. Environ Sci, 2014, 35(1):371-379. http://d.old.wanfangdata.com.cn/Periodical/hjkx201401053
    [37]
    MOURA R A, SEOLATTO A A, DE OLIVEIRA M, FREITAS F F. The adsorption study of royal blue tiafix and black tiassolan dyes using bone char as adsorbent[J]. Adsorpt Sci Technol, 2018, (3/4):1178-1198. https://www.researchgate.net/publication/323227162_The_adsorption_study_of_Royal_Blue_Tiafix_and_Black_Tiassolan_dyes_using_bone_char_as_adsorbent
    [38]
    SOARES J C, SOARES A C, PEREIRA P A R, RODRIGUES V D C, SHIMIZU F M, MELENDEZ M E, NETO C S, CARVALHO A L, LEITE F L, MACHADO S A S, OLIVEIRA JR O N. Adsorption according to the Langmuir-Freundlich model is the detection mechanism of the antigen p53 for early diagnosis of cancer[J]. Phys Chem Cheml Phys, 2016, 18(12):8412-8418. doi: 10.1039/C5CP07121F
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (211) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return