Volume 44 Issue 1
Jan.  2016
Turn off MathJax
Article Contents
LIU Yang, HE Kun, LI Xian-qing, HAN Rui, WANG Zhe, XU Hong-wei. Performance of various catalysts in hydropyrolysis of organic matters and reaction mechanisms[J]. Journal of Fuel Chemistry and Technology, 2016, 44(1): 53-59.
Citation: LIU Yang, HE Kun, LI Xian-qing, HAN Rui, WANG Zhe, XU Hong-wei. Performance of various catalysts in hydropyrolysis of organic matters and reaction mechanisms[J]. Journal of Fuel Chemistry and Technology, 2016, 44(1): 53-59.

Performance of various catalysts in hydropyrolysis of organic matters and reaction mechanisms

Funds:

The project was supported by the National Natural Science Foundation of China 41572125

Important National Science & Technology Specific Projects of China during the 12th Five-year Plan Period 2011ZX05007-002

Important National Science & Technology Specific Projects of China during the 12th Five-year Plan Period 2011ZX05033-004

National Special Fund for Research in the Public Interest 201311022

Independent Scientific Research Project of State Key Lab-oratory of Coal Resources and Safe Mining SKLCRSM10B04

More Information
  • Corresponding author: LI Xian-qing, Tel: 010-62331854-8131, E-mail: lixq@cumtb.edu.cn
  • Received Date: 2015-07-28
  • Rev Recd Date: 2015-11-09
  • Available Online: 2022-03-23
  • Publish Date: 2016-01-01
  • The hydropyrolysis of organic matters was comparatively conducted over various catalysts including ZnCl2, NiCl2, Fe2O3, NaY and MoS2 and the reaction mechanisms over different catalysts were then investigated. The results indicate that the yield and composition of liquid products from hydropyrolysis are related to the type of catalyst, though various catalysts do not have significant difference in the product biomarker parameters. Meanwhile, for the organic matters with different maturities and types, various catalysts are also quite different in their actual performance. The element analysis, infrared spectra and X-ray diffractograms of the solid residues illustrate that various catalysts are obviously different in the catalytic reaction mechanism. In comparison with NiCl2, mass transfer is an important factor in the ZnCl2 system, besides the catalytic cracking and catalytic hydrogenation. With Fe2O3 as the catalyst, the formation of H free radical by the adsorption of H2 at the surface active O sites may promote the hydrogenation of organic matters. MoS2 as the catalyst may involve two mechanisms, viz., the hydrogenation over transition metal Mo and the initiation of free radicals from H2S intermediates.
  • loading
  • [1]
    李保庆.我国煤加氢热解研究Ⅱ.先锋褐煤加氢及催化加氢热解的热重研究[J].燃料化学学报, 1995, 23(2): 186-191. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX502.012.htm

    LI Bao-qing. Hydropyrolysis of Chinese coals Ⅱ. Thermogravimetric study on catalytic and non-catalytic hydropyrolysis of Xianfeng lignite[J]. J Fuel Chem Technol, 1995, 23(2): 186-191. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX502.012.htm
    [2]
    李保庆.我国煤加氢热解研究Ⅲ.神府煤加氢、催化加氢及H2-CH4气氛下热解的研究[J].燃料化学学报, 1995, 23(2): 192-196. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX502.012.htm

    LI Bao-qing. Hydropyrolysis of Chinese coals Ⅲ. Catalytic and non-catalytic hydropyrolysis under H2-CH4 of Shenfu bituminous coal[J]. J Fuel Chem Technol, 1995, 23(2): 192-196. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX502.012.htm
    [3]
    PETERS K E, MOLDOWAN J M. The bionmarker guide: Interpreting molecular fossoils in petroleum and ancient sediments[M]. New Jersey: Prentice Hall, 1993: 170-176.
    [4]
    傅家谟, 盛国英, 许家友, 贾蓉芬, 范善发, 彭平安, EGLINTON G, GOWAR A P.应用生物标志化合物参数判识古沉积环境[J].地球化学, 1991, 20(1): 1-12. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX199101000.htm

    FU Jia-mo, SHENG Guo-ying, XU Jia-you, JIA Rong-fen, FAN Shan-fa, PENG Ping-an, EGLINTON G, GOWAR A P. Application of biomarker compounds in assessment of paleoenvironxnents of Chinese terrestrial sediments[J]. Geochimica, 1991, 20(1): 1-12. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX199101000.htm
    [5]
    LOVE G D, SNAPE C E, CAM A D. Release of covalently-bound alkane biomarkers in high yields from kerogen via catalytic hydropyrolysis[J]. Org Geochem, 1995, 23(10): 981-986. doi: 10.1016/0146-6380(95)00075-5
    [6]
    IKENAGA N, KAN-NAN S, SAKODA T, SUZUKI T. Coal hydroliquefaction using highly dispersed catalyst precursors[J]. Catal Today, 1997, 39(1/2): 99-109. https://www.researchgate.net/publication/244320836_Coal_hydroliquefaction_using_highly_dispersed_catalyst_precursors
    [7]
    INUKAI Y. Hydroliquefaction of Illinois NO.6 coal with petroleum atmospheric residue using oil-soluble molybdenum catalyst[J]. Fuel Process Technol, 1995, 43(2): 157-167. doi: 10.1016/0378-3820(95)00017-2
    [8]
    岳长涛, 李术元, 徐明, 钟宁宁.柴油与硫酸镁反应体系模拟实验研究[J].石油实验地质, 2010, 32(6): 610-614. http://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201006020.htm

    YUE Chang-tao, LI Shu-yuan, XU Ming, ZHONG Ning-ning. Simulation experiments on the TSR system of diesel and mangnesium sulfate[J]. Pet Geol Exp, 2010, 32(6): 610-614. http://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201006020.htm
    [9]
    ROCHA J D, BROWN S D, LOVE G D, SNAPE C E. Hydropyrolysis: A versatile technique for solid fuel liquefaction, sulfur speciation and biomarker release[J]. J Anal Appl Pyrolysis, 1997, 40-41: 91-103. doi: 10.1016/S0165-2370(97)00041-7
    [10]
    RUSSELL C A, SNAPE C E, MEREDITH W. The potential of bound biomarker prfiles released from catalytic hydropymlysis to reconstruction basin charging history for oils[C]. Abstract for 21th International Meeting on Organic Geochemistry K rakow. 2003: 160-161.
    [11]
    LOCKHART R S, MEREDIT H W, LOVE G D. Release of bound aliphatic biomarkers via hydropyrolysis from Type Ⅱ kerogen at high maturity[J]. Org Geochem, 2008, 39(8): 1119-1124. doi: 10.1016/j.orggeochem.2008.03.016
    [12]
    HE K, ZHANG S C, MI J K. Mechanism of catalytic hydropyrolysis of sedimentary organic matter with MoS2[J]. Pet Sci, 2011, 8(2): 134-142. doi: 10.1007/s12182-011-0126-0
    [13]
    ZELENSKI C M, DORHOUT P K. Template synthesis of near-monodisperse microscale nanofibers and nanotubes of MoS2[J]. J Am Chem Soc, 1998, 120(4): 734-742. doi: 10.1021/ja972170q
    [14]
    FARAG H, EI-HEDAWY A, SAKAISHI K, KISHIDA M, MOCHIDA I. Catalytic activity of synthesized nanosized molybdenum disulfide for the hydrodesulfurization of dibenzthiophene: Effect of H2S partial pressure[J]. Appl Catal B: Environ, 2009, 91(1/2): 189-197.
    [15]
    SONG J H, CHEN P L, KIM S H. Catalytic cracking of n-hexane over MoO2[J]. J Mol Catal A, 2002, 184(1/2): 197-202. http://www.deepdyve.com/lp/elsevier/catalytic-cracking-of-n-hexane-over-moo-2-TZvu2LB0vd
    [16]
    PINTO F, GULYURTLU I, LOBO L S, CABRITA I. The effect of catalyst blending on coal hydropyrolysis[J]. Fuel, 1999, 78(7): 761-768. doi: 10.1016/S0016-2361(98)00212-9
    [17]
    SONG C S, NOMURA M, MIYAKE M. Coal hydroliquefaction using MoCl3-and NiCl2-containing salts as catalysts: Difference in catalysis between solid and molten catalysis[J]. Fuel, 1986, 65(7): 922-926. doi: 10.1016/0016-2361(86)90199-7
    [18]
    WANG L, CHEN P. Mechanism study of iron-based catalysts in co-liquefaction of coal with waste plastics[J]. Fuel, 2002, 81(6): 811-815. doi: 10.1016/S0016-2361(01)00201-0
    [19]
    HE K, DONG Y M, LI Z. Catalytic ozonation of phenol in water with natural brucite and magnesia[J]. J Hazard Mater, 2008, 159(2/3): 587-592. https://www.researchgate.net/publication/5453098_Catalytic_ozonation_of_phenol_in_water_with_natural_brucite_and_magnesia
    [20]
    HE K, DONG Y M, LIN Y. A facile hydrothermal method to synthesize nanosized Co3O4/CeO2 and study of its catalytic characteristic in catalytic ozonation of phenol[J]. Catal Lett, 2009, 133(1): 209-213.
    [21]
    PRIYANTO U, SAKANISHI K, OKUMA O, MOCHIDA I. Liquefaction of Tanito Harum coal with bottom recycle using FeNi and FeMoNi catalysts supported on carbon nanoparticles[J]. Fuel Process Technol, 2002, 79(1): 51-62. doi: 10.1016/S0378-3820(02)00101-7
    [22]
    SONG C, SAINI A K, YONEYAMA Y. A new process for catalytic liquefaction of coal using dispersed MoS2 catalytic generated in situ with added H2O[J]. Fuel, 2000, 79(3/4): 249-261. https://www.researchgate.net/publication/239142126_New_process_for_catalytic_liquefaction_of_coal_using_dispersed_MoS2_catalyst_generated_in_situ_with_added_H2O
    [23]
    BOONE W P, EKERDT J G. Hydrodesulfurization studies with a single-layer molybdenum disulfite catalyst[J]. J Catal, 2000, 193(1): 96-102. doi: 10.1006/jcat.2000.2884
    [24]
    ZHANG T W, AMRANI A, ELLIS G S, MA Q S, TANG Y C. Experimental investigation on thermochemical sulfate reduction by H2S initiation[J]. Geochim Cosmochim Acta, 2008, 72(14): 3518-3530. doi: 10.1016/j.gca.2008.04.036
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (64) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return